Browse results

You are looking at 1 - 10 of 2,209 items for :

  • Primary Language: English x
Clear All

Abstract

Evidence concerning the relationship between attention and multisensory integration has long been thought to lead us into a paradox. The paradox has its roots in evidence that seems to show that attention exerts an influence on integration, and that integration also exerts an influence on attention. This creates an appearance of paradox only if it is understood to imply that particular instances of the integration process must occur both before and after particular instances of the attention process. But this appearance of paradox can be removed if we can find a way to resist the idea that there must be fixed temporal relations between the instances of these processes. That idea can seem hard to resist if both are understood to be processes of the sort that are brought to a halt by their own completion. Reflection on a metaphysical distinction between different sorts of process shows this understanding can be rejected. The appearance of paradox is thereby removed.

In: Multisensory Research

Abstract

The majority of emotional expressions used in daily communication are multimodal and dynamic in nature. Consequently, one would expect that human observers utilize specific perceptual strategies to process emotions and to handle the multimodal and dynamic nature of emotions. However, our present knowledge on these strategies is scarce, primarily because most studies on emotion perception have not fully covered this variation, and instead used static and/or unimodal stimuli with few emotion categories. To resolve this knowledge gap, the present study examined how dynamic emotional auditory and visual information is integrated into a unified percept. Since there is a broad spectrum of possible forms of integration, both eye movements and accuracy of emotion identification were evaluated while observers performed an emotion identification task in one of three conditions: audio-only, visual-only video, or audiovisual video. In terms of adaptations of perceptual strategies, eye movement results showed a shift in fixations toward the eyes and away from the nose and mouth when audio is added. Notably, in terms of task performance, audio-only performance was mostly significantly worse than video-only and audiovisual performances, but performance in the latter two conditions was often not different. These results suggest that individuals flexibly and momentarily adapt their perceptual strategies to changes in the available information for emotion recognition, and these changes can be comprehensively quantified with eye tracking.

In: Multisensory Research
Authors: Tutku Öztel and Fuat Balcı

Our subjective experience of time intervals is susceptible to the effects of the various properties of the timed stimuli/events (e.g., motion, size, affect). For instance, subjective time is considerably lengthened when observing faster and shortened when observing slower walking animations. Such effects on perceived time have been investigated widely in the field. What we do not know based on these studies is if participants are aware of these sorts of stimulus-induced timing illusions. Thus, the current study, using confidence ratings, investigated whether the participants are aware of their largely biased time perception induced by the observed walking speed in a temporal bisection task. After each categorization of a probe interval as ‘short’ or ‘long’, we asked participants to rate their confidence level regarding their categorization. We reasoned that if participants were aware of their biased time perception, the temporal modulation of confidence ratings regarding their categorization performance would not change between different walking speed conditions. We found that confidence ratings closely tracked shifts in the psychometric functions suggesting that participants were not aware of the stimulus-induced warping of perceived time. We replicated these findings in a second experiment. Our results show that human participants are not aware of the stimulus-induced temporal illusions they experience.

In: Timing & Time Perception
Author: Charles Spence

Abstract

A wide variety of crossmodal correspondences, defined as the often surprising connections that people appear to experience between simple features, attributes, or dimensions of experience, either physically present or else merely imagined, in different sensory modalities, have been demonstrated in recent years. However, a number of crossmodal correspondences have also been documented between more complex (i.e., multi-component) stimuli, such as, for example, pieces of music and paintings. In this review, the extensive evidence supporting the emotional mediation account of the crossmodal correspondences between musical stimuli (mostly pre-recorded short classical music excerpts) and visual stimuli, including colour patches through to, on occasion, paintings, is critically evaluated. According to the emotional mediation account, it is the emotional associations that people have with stimuli that constitutes one of the fundamental bases on which crossmodal associations are established. Taken together, the literature that has been published to date supports emotional mediation as one of the key factors underlying the crossmodal correspondences involving emotionally-valenced stimuli, both simple and complex.

In: Multisensory Research

Abstract

Are alternation and co-occurrence of stimuli of different sensory modalities conspicuous? In a novel audio-visual oddball paradigm, the P300 was used as an index of the allocation of attention to investigate stimulus- and task-related interactions between modalities. Specifically, we assessed effects of modality alternation and the salience of conjunct oddball stimuli that were defined by the co-occurrence of both modalities. We presented (a) crossmodal audio-visual oddball sequences, where both oddballs and standards were unimodal, but of a different modality (i.e., visual oddball with auditory standard, or vice versa), and (b) oddball sequences where standards were randomly of either modality while the oddballs were a combination of both modalities (conjunct stimuli). Subjects were instructed to attend to one of the modalities (whether part of a conjunct stimulus or not). In addition, we also tested specific attention to the conjunct stimuli. P300-like responses occurred even when the oddball was of the unattended modality. The pattern of event-related potential (ERP) responses obtained with the two crossmodal oddball sequences switched symmetrically between stimulus modalities when the task modality was switched. Conjunct oddballs elicited no oddball response if only one modality was attended. However, when conjunctness was specifically attended, an oddball response was obtained. Crossmodal oddballs capture sufficient attention even when not attended. Conjunct oddballs, however, are not sufficiently salient to attract attention when the task is unimodal. Even when specifically attended, the processing of conjunctness appears to involve additional steps that delay the oddball response.

In: Multisensory Research
In: Multisensory Research

Abstract

In the original double flash illusion, a visual flash (e.g., a sharp-edged disk, or uniformly filled circle) presented with two short auditory tones (beeps) is often followed by an illusory flash. The illusory flash has been previously shown to be triggered by the second auditory beep. The current study extends the double flash illusion by showing that this paradigm can not only create the illusory repeat of an on-off flash, but also trigger an illusory expansion (and in some cases a subsequent contraction) that is induced by the flash of a circular brightness gradient (gradient disk) to replay as well. The perception of the dynamic double flash illusion further supports the interpretation of the illusory flash (in the double flash illusion) as similar in its spatial and temporal properties to the perception of the real visual flash, likely by replicating the neural processes underlying the illusory expansion of the real flash. We show further that if a gradient disk (generating an illusory expansion) and a sharp-edged disk are presented simultaneously side by side with two sequential beeps, often only one visual stimulus or the other will be perceived to double flash. This indicates selectivity in auditory–visual binding, suggesting the usefulness of this paradigm as a psychophysical tool for investigating crossmodal binding phenomena.

In: Multisensory Research

Abstract

Beats are among the basic units of perceptual experience. Produced by regular, intermittent stimulation, beats are most commonly associated with audition, but the experience of a beat can result from stimulation in other modalities as well. We studied the robustness of visual, vibrotactile, and bimodal signals as sources of beat perception. Subjects attempted to discriminate between pulse trains delivered at 3 Hz or at 6 Hz. To investigate signal robustness, we intentionally degraded signals on two-thirds of the trials using temporal-domain noise. On these trials, inter-pulse intervals (IPIs) were stochastic, perturbed independently from the nominal IPI by random samples from zero-mean Gaussian distributions with different variances. These perturbations produced directional changes in the IPIs, which either increased or decreased the likelihood of confusing the two pulse rates. In addition to affording an assay of signal robustness, this paradigm made it possible to gauge how subjects’ judgments were influenced by successive IPIs. Logistic regression revealed a strong primacy effect: subjects’ decisions were disproportionately influenced by a trial’s initial IPIs. Response times and parameter estimates from drift-diffusion modeling showed that information accumulates more rapidly with bimodal stimulation than with either unimodal stimulus alone. Analysis of error rates within each condition suggested consistently optimal decision making, even with increased IPI variability. Finally, beat information delivered by vibrotactile signals proved just as robust as information conveyed by visual signals, confirming vibrotactile stimulation’s potential as a communication channel.

In: Multisensory Research

Abstract

Dual-task performance depends on both modalities (e.g., vision, audition, haptics) and task types (spatial or object-based), and the order by which different task types are organized. Previous studies on haptic and especially auditory–haptic attentional blink (AB) are scarce, and the effect of task types and their order have not been fully explored. In this study, 96 participants, divided into four groups of task type combinations, identified auditory or haptic Target 1 (T1) and haptic Target 2 (T2) in rapid series of sounds and forces. We observed a haptic AB (i.e., the accuracy of identifying T2 increased with increasing stimulus onset asynchrony between T1 and T2) in spatial, object-based, and object–spatial tasks, but not in spatial–object task. Changing the modality of an object-based T1 from haptics to audition eliminated the AB, but similar haptic-to-auditory change of the modality of a spatial T1 had no effect on the AB (if it exists). Our findings fill a gap in the literature regarding the auditory–haptic AB, and substantiate the importance of modalities, task types and their order, and the interaction between them. These findings were explained by how the cerebral cortex is organized for processing spatial and object-based information in different modalities.

In: Multisensory Research

Abstract

Sensory Substitution Devices (SSDs) are typically used to restore functionality of a sensory modality that has been lost, like vision for the blind, by recruiting another sensory modality such as touch or audition. Sensory substitution has given rise to many debates in psychology, neuroscience and philosophy regarding the nature of experience when using SSDs. Questions first arose as to whether the experience of sensory substitution is represented by the substituted information, the substituting information, or a multisensory combination of the two. More recently, parallels have been drawn between sensory substitution and synaesthesia, a rare condition in which individuals involuntarily experience a percept in one sensory or cognitive pathway when another one is stimulated. Here, we explore the efficacy of understanding sensory substitution as a form of ‘artificial synaesthesia’. We identify several problems with previous suggestions for a link between these two phenomena. Furthermore, we find that sensory substitution does not fulfil the essential criteria that characterise synaesthesia. We conclude that sensory substitution and synaesthesia are independent of each other and thus, the ‘artificial synaesthesia’ view of sensory substitution should be rejected.

In: Multisensory Research