Browse results

You are looking at 1 - 10 of 15 items for :

  • Upcoming Publications x
  • Just Published x
  • Search level: Titles x
Clear All
Author: Wolfgang Lenzen
Dieses Buch bietet eine umfassende Darstellung der logischen Theorien des frühmittelalterlichen Philosophen (und Theologen) Abaelard.
Die wesentlichsten logischen Innovationen Abaelards umfassen die Unterscheidung zweier verschiedener Formen der Negation, durch die das traditionelle Logische Quadrat zu einem Logischen Oktagon erweitert wird, sowie die Einführung einer „relevanten“ Implikation, durch die die Paradoxien der strikten Implikation vermieden bzw. die Geltung der (zuerst von Aristoteles formulierten) Grundgesetze einer „konnexiven Logik“ gesichert werden sollen.
Richard Kilvington was one of the most talented Oxford Calculators. His influence on late medieval philosophy and theology remains unquestionable. He made a name for himself with his logical treatise Sophismata, which was soon followed by a series of three commentaries on Aristotle’s works and a commentary on Peter Lombard’s Sentences. Richard Kilvington on the Capacity of Created Being, Infinity, and Being Simultaneously in Rome and Paris by Monika Michałowska presents a critical edition of question 3 from Kilvington’s Quaestiones super libros Sententiarum, complete with an introduction to the edition and a guide to Kilvington’s theological concepts. Kilvington’s theological question commentary enjoyed considerable popularity and became a source of continuous inspiration for Oxonian and Parisian masters.
Eleven papers collected in the volume Philosophical Approaches to the Foundations of Logic and Mathematics address various aspects of the “roots”, basic concepts and the nature of logic and mathematics. Taken together, these papers reveal how many serious philosophical problems lie at the foundations of logic and mathematics.

The topics discussed in this volume include: transcending anti-foundationalism and two concurrent trends of "anthropological" and "practical" understanding of the foundations of mathematics, new approaches to mathematical realism, the “roots” of logic in a genetic perspective, the primacy of truth or satisfaction, and the “effectiveness” of mathematics in terms of categorical semantics.
Philosophische Überlegungen zum Verhältnis von sprachlichem und nicht-sprachlichem Verstehen
Author: Dirk Schröder
Was heißt es, etwas zu verstehen? Dieses Buch verfolgt das Ziel, einen Beitrag zu einer Theorie des Verstehens zu leisten, indem es einen Ausschnitt aus dem Bereich der Objekte und Formen des Verstehens untersucht. Die Schwerpunkte liegen dabei auf dem Verstehen einer Sprache und dem Verstehen nicht-sprachlicher Praktiken. Der Autor setzt sich mit einer Reihe von Positionen und Argumenten aus der neueren, insbesondere analytischen Philosophie der Sprache, des Geistes und der Erkenntnis auseinander, greift aber auch Gedanken aus der klassischen sowie philosophischen Hermeneutik auf. Gegen verbreitete Ansichten argumentiert er, dass Verstehen von Wissen zu unterscheiden und grundsätzlich als Fähigkeit zu erklären ist, die im Rahmen sprachlicher, aber auch sprachunabhängiger Praktiken ausgeübt werden kann. Verstehen begreift er als praktische Form der Erkenntnis, die auf sprachlichen und nicht-sprachlichen Sinn zielt.
The Use of Common Sense Reasoning in Conversation
In Enthymemes and Topoi in Dialogue, Ellen Breitholtz presents a novel and precise account of reasoning from an interactional perspective. The account draws on the concepts of enthymemes and topoi, originating in Aristotelian rhetoric and dialectic, and integrates these in a formal dialogue semantic account using TTR, a type theory with records.
Argumentation analysis and formal approaches to reasoning often focus the logical validity of arguments on inferences made in discourse from a god’s-eye perspective. In contrast, Breitholtz’s account emphasises the individual perspectives of interlocutors and the function and acceptability of their reasoning in context. This provides an analysis of interactions where interlocutors have access to different topoi and therefore make different inferences.
Concept and Judgment in Brentano's Logic Lectures is concerned with a crucial aspect of Brentano's philosophy as it was developed in his logic lectures from c. 1870 to c. 1885. The first part of the volume is an analysis of his theory of concept and judgment. The second part consists of materials, including a German edition and English translation of notes that a student took from a lecture course that Brentano gave. A short book by this student on Brentano is also translated in the materials.

The access to Brentano's philosophy is enhanced by this volume not only with regard to his logic as a theory of deductive inference, but also to his descriptive psychology, metaphysics, and philosophy of language.
The Sorites Paradox and the Nature and Logic of Vague Language
Author: Inga Bones
This book examines philosophical approaches to linguistic vagueness, a puzzling feature of natural language that gives rise to the ancient Sorites Paradox and challenges classical logic and semantics.
The Sorites, or Paradox of the Heap, consists in three claims: (1) One grain of sand does not make a heap. (2) One billion grains of sand do make a heap. (3) For any two amounts of sand differing by at most one grain: either both are heaps of sand, or neither one is. The third claim is rendered plausible by an initial conviction that vague predicates like ‘heap’ tolerate small changes. However, the repeated application of a tolerance principle to the second claim yields the further proposition that one grain of sand does make a heap – which contradicts claim number one. Consequently, many philosophers reject or modify tolerance principles for vague predicates.
Inga Bones reassesses prominent responses to the Sorites and defends a Wittgensteinian dissolution of the paradox. She argues that vague predicates are, indeed, tolerant and discusses how this finding relates to the paradox itself, to the notion of validity and to the concept of a borderline case.
A Sceptical Theory of Scientific Inquiry: Problems and Their Progress presents a distinctive re-interpretation of Popper’s ‘critical rationalism’, displaying the kind of spirit found at the L.S.E. before Popper’s retirement. It offers an alternative to interpretations of critical rationalism which have emphasised the significance of research programmes or metaphysics (Lakatos; Nicholas Maxwell), and is closer to the approach of Jagdish Hattiangadi. Briskman gives priority to methodological argument rather than logical formalisms, and takes further his own work on creativity. In addition to offering an important contribution to the understanding of critical rationalism, the book contains interesting engagements with Michael Polanyi and the Meno Paradox. This volume also contains an introduction by the editor, which situates Briskman’s work in the history of the interpretation of ‘critical rationalism’.
This book examines the tension between formal and informal methods in philosophy. The rise of analytic philosophy was accompanied by the development of formal logic and many successful applications of formal methods. But analytical philosophy does not rely on formal methods alone. Elements of broadly understood informal logic and logical semiotics, procedures used in natural sciences and humanities, and various kinds of intuition also belong to the philosopher’s toolkit. Papers gathered in the book concern the opposition formality–informality as well as other pairs, such as methodology versus metaphilosophy, interdisciplinarity versus intradisciplinarity, and methodological uniformity versus diversity of sciences. Problems of the nature of logic and the explanatory role of mathematical theories are also discussed.
Ein Kommentar des Vorworts, des Nachworts und der einleitenden Paragrafen
In seinem Hauptwerk »Grundgesetze der Arithmetik« stellt Gottlob Frege sein Logizistisches Programm – ausgearbeitet in der Philosophie der Mathematik – dar. Er leitet die Axiome der Arithmetik allein mit Beweismitteln der Logik aus logischen Wahrheiten, den Grundgesetzen der Arithmetik, ab. Rainer Stuhlmann-Laeisz leitet ein in Gottlob Freges Philosophie der Logik und der Mathematik und kommentiert das Vorwort, das Nachwort sowie die einleitenden Paragrafen der »Grundgesetze«. Ebenfalls aufgenommen in den Band sind in leicht überschaubarer Zuordnung die kommentierten Fregeschen Texte. Das Buch ist auch für die akademische Lehre in den Anfangssemestern geeignet.