The phylogeny, systematics and fossil record of the Goneplacidae MacLeay (Crustacea, Decapoda, Brachyura) revisited

Hiroaki Karasawa¹ & Hisayoshi Kato²

¹Mizunami Fossil Museum, Yamanouchi, Akeyo, Mizunami, Gifu 509-6132, Japan; ²Natural History Museum and Institute, Chiba, Aoba-cho, Chiba 260-8682, Japan

Keywords: Crustacea, Decapoda, Brachyura, Goneplacidae, phylogeny, systematics

Abstract

We review the Goneplacidae and review the various alternative hypotheses concerning membership within the family. We offer a new cladistic based hypothesis of phylogenetic relationships within the group.

Introduction

Traditionally, the family Goneplacidae MacLeay (Brachyura, Xanthoida) has been recognized as a monophyletic group (Balss, 1957). Since Guinot (1969a) first suggested that the Goneplacidae was a polyphyletic group, the subfamilial arrangement has been modified by subsequent workers (Guinot, 1969b, 1971, 1978; Manning & Holthuis, 1981; Ng, 1987 and others). In a recent systematic treatment, Lemaitre et al. (2001) have now divided the Goneplacidae into six subfamilies, namely Carinocarcininae H. Milne Edwards, Chasmocarcininae Serène, Euryplacinae Stimpson, Goneplacinae, Pseudoziinae Alcock, and Trogloplacinae Guinot. Subsequently, Davie (2002) has assigned two additional subfamilies, Pilumnoidinae Guinot & Macpherson and Planopilumminae Serène, to the systematic Goneplacidae, and afforded the Trogloplacinae full family status. Ng & Liao (2002) excluded the Pseudoziinae from the Goneplacidae and elevated the Pseudoziinae to family status, and included the Planopilumminae and Pseudoziinae within the Pseudoziidae.

In a recent paper, we (Karasawa & Kato, in press) provide an adult morphology-based phylogenetic analysis of fourteen genera within the Goneplacidae, based upon forty-five characters, and propose a new classification (Appendix A) and phylogeny of the family. We suggest the division of the Goneplacidae into six subfamilies, viz., Carinocarcininae Karasawa & Kato, Chasmocarcininae, Euryplacinae, Goneplacinae (= Carinoplacinae), Mathildellinae Karasawa & Kato, and Trogloplacinae. Within the Goneplacidae, the Trogloplacinae and Chasmocarcininae are sister groups nested as the most derived clade, followed by the Carinocarcininae, Goneplacinae, Euryplacinae, and the most basal Mathildellinae. We also suggest the Pseudoziidae is the sister group to the Eriphiidae.

Results

The Goneplacidae sensu lato has been commonly recorded from the Paleogene to the Recent and has previously included at least thirty-five fossil genera (Karasawa & Kato, in press). However, distinction between goneplacid on the one hand and panopeid, pilumnid, and pseudorhombilid genera on the other is difficult based solely upon carapace characters (Schweitzer, 2000). A re-examination of fossil taxa previously assigned to the Goneplacidae has shown that sixty-two species, twenty genera, and five subfamilies may be recognized as fossils (Karasawa & Kato, 2002, in press). Sixteen extinct genera previously assigned to the family were not referred to any goneplacid subfamilies and were excluded from the Goneplacidae (Karasawa & Kato, in press). In the same paper, we do not mention the systematic placement of Bicarinocarcinus Glaessner.
Phylogeny of the Gonoplacidae

H. Karasawa & H. Kato

Fig. 1. Strict consensus tree of four most-parsimonious trees of twenty genera; phylogenetic analysis using PAUP* 4.0b (Swofford, 1999), data matrix originating in MacClade version 4.05 (Maddison & Maddison, 2002). This tree is rooted against a hypothetical ancestor. Relative stability of clades was assessed using bootstrap (Felsenstein, 1985) and decay analyses (Bremer, 1994); bootstrapping was based on 100 replicates of random input order. The Bremer support was obtained using constraint trees generated by MacClade and analyzed using PAUP*. Numbers above branches are bootstrap support and numbers below branches are Bremer support. Unambiguous character changes are as follows: box 1 = 45(1); 2 = 23(1), 24(1); 3 = 27(1); 4 = 36(1); 5 = 22(1), 25(1), 46(1); 6 = 38(1), 48(1); 7 = 15(1); 8 = 26(1), 28(1), 43(1); 9 = 16(1); 10 = 4(1); 11 = 1(1), 37(1); 12 = 48(1); 13 = 18(1), 19(1), 20(1), 21(1), 30(1), 32(1); 14 = 12(1), 17(1), 31(1); 15 = 13(1), 48(2).

& Secretan, 1987, which was originally placed within the Carcinocarcinacea. The carapace and thoracic sternum characters are most like those of \textit{Carino-carcinoides} Karasawa & Fudouji, the sole genus of the Carinocarcinoidinae. Therefore, \textit{Bicarinocarcinus} is here referred to the Carinocarcinoidinae. Schweitzer et al. (2002) have recently shown that there are close affinities between \textit{Icriocarcinus} Bishop and \textit{Ommatocarcinus} White, and removed the former genus from the Caricerectidae Beurlen and into the Goneplacidae. This occurrence extends the geologic range for the family back to the Late Cretaceous.

In more recent works, four genera have been added to the Chasmocarcininae. Karasawa & Kato (in press) provisionally transfer \textit{Georgeoplax} Türkay and \textit{Litocheira} Kinam to the Pilumnidae, following Guinot (1969b, 1971), while Davie (2002) referred both genera to the Chasmocarcininae. They both differ from members of Chasmocarcininae (sensu Karasawa & Kato) in that a wide male abdomen fills the entire space between coxae of pereiopods 5, the thoracic sternite 8 does not possess a supplementary plate, dactyls of pereiopods 5 are not sickle shaped, gonopod 1 is twisted with a distal process, and gonopod 2 is much shorter than gonopod 1. Thus, both genera lack the diagnostic characters of the Chasmocarcininae.
plax, Litocheira and Parapilumnus from the Chasmocarcininae.

Karasawa & Kato (in press) do not discuss the subfamilial placement of Megaesthesius Rathbun, Notonyx A. Milne Edwards, Raouilia Ng, and Typhlocarcinodes Alcock, all of which have been excluded from the pilumnid subfamily Rhizopinae Stimpson by Ng (1987). Serènè (1964) originally placed Megaesthesius within his new subfamily Chasmocarcininae while Davie & Guinot (1996) and Karasawa & Kato (in press) excluded this genus from the subfamily. However, Megaesthesius is here reassigned to the Chasmocarcininae based upon male abdomen and thoracic sternum characters. Serène & Soh (1976) assigned Notonyx to the Goneplacidae by having a long, elongate gonopod 2 with a long flagellum; we concur. In Raouilia and Typhlocarcinodes, the male abdominal somites 3-5 are fused, and the male gonopod 2 is long and about equal to gonopod 1 with a long flagellum. Therefore, both genera resemble members of the Troglolocidae but detailed characters of the male thoracic sternum are not yet known.

In the phylogenetic analysis by Karasawa & Kato (in press), the Pilumnoidinae, assigned to the Goneplacidae by Davie (2002), was not included because Guinot & Macpherson (1987) noted that there is a close relationship between Pilumnoides Lucas and Carpilius Leach (Carpiliidae Ortmann), as based upon thoracic sternum and cheliped characters. Ng & Guinot (1999) suggested to transfer Progeryon Bouvier from the Geryonidae Colosi to the Goneplacidae. Therefore, we have re-examined an adult morphology-based phylogenetic analysis for twenty genera, including Carpilius, Pilumnoides, and Progeryon, based upon 49 morphological characters (Appendix B). Appendix C lists 49 characters and character states used in the present analysis.

The present analysis yielded four most-parsimonious trees, 108 steps long with a consistency index (CI) of 0.6019, a retention index (RI) of 0.7962 and a rescaled consistency index (RC) of 0.4792. A strict consensus of four most-parsimonious trees, indicating bootstrap and Bremer support, is given in Fig. 1. Pilumnoides, the sole genus of the Pilumnoidinae, is excluded from the Goneplacidae. Pilumnoides and Carpilius are sister taxa nested as the most basal clade and both genera share two synapomorphies (10-1, 45-1). D’Udekem d’Acoz (1999) raised the Pilumnoidinae to full family status. The present analysis supports the recognition of the Pilumnoidinae and suggests that the family is the sister taxon of the Carpiillidae. The monophyly of the remaining goneplacids is well supported by four synapomorphies (11-1, 22-1, 25-1, 46-1). However, the present analysis is unable to resolve the relationships between Progeryon (Goneplacidae incertae sedis) and other goneplacid subfamilies.

Davie (2002) elevated the Troglolocidae to full family status, although Davie & Guinot (1996) and Karasawa & Kato (in press) pointed out that the Troglolocidae has close affinities with the Chasmocarcininae. If the Troglolocidae is treated as a separate family, the remaining goneplacids become a polyphyletic group. D’Udekem d’Acoz (1999) raised the Euryplacinae and Carcinoplacinae to full family status and included both families in the superfamily ‘Goneplacoidea’. Stevcic (in Martin & Davis, 2001) also thought to elevate the Euryplacinae to family status. There is a possibility that the six subfamilies defined by Karasawa & Kato (in press) may be raised to full family status, taking into account of these works.

It is not clear which could be a reliable sister group to the Goneplacidae. Guinot (1969b) and Stevcic (in Martin & Davis, 2001) mentioned that there is a close relationship between the Goneplacidae and Geryonidae based upon adult morphology, while Rice (1980) showed that the family is most similar to the Pilumnidae Samouelle based upon zoeal morphology. Von Sternberg & Cumbreridge (2001) suggested that, based upon cladistic and phenetic analyses, the Goneplacidae might be more closely related to the Portunoidae (inclusive of the Geryonidae) than to any family of the Xanthoidea. Karasawa & Kato (in press) show that the Goneplacidae is derived as the sister group to the Pilumnidae.

The subfamilial arrangements of some genera have not yet been satisfactorily cleared. Should the known subfamilies be given full family status? Then, should they be transferred from the superfamily Xanthoidea to the ‘Goneplacoidea’? What is a true sister group of the Goneplacidae? These are subjects of forthcoming papers.
Acknowledgements

We thank P.K.L. Ng (National University of Singapore) for valuable comments on some gonoplacid taxa and on our phylogenetic analysis, and D. Guinot (Muséum national d'Histoire naturelle, Paris) and Z. Stevcic (Center for Marine Research, Croatia) for their much appreciated comments on some taxa.

References

Received: 15 March 2003
Contributions to Zoology, 72 (2-3) – 2003

Appendix A. Systematic list of genera currently assigned to the Goneplacidae. Asterisks indicate extinct genus (modified from Karasawa & Kato, in press).

Subfamily Mathildellinae Karasawa & Kato, in press (Paleogene-Recent)

Subfamily Euryplacinae Stimpson, 1871 (Eocene-Recent)

Viapla Karasawa & Kato, in press

Subfamily Goneplacinae MacLeay, 1838 (Late Cretaceous-Recent)

Subfamily Carinocarcinoidae Karasawa & Kato, in press (Eocene-Oligocene)

Bicarincarcinus Glaessner & Secretan, 1987*, Carinocarcinoides Karasawa & Fudouji, 2000*

Subfamily Trogloplacinae Guinot, 1986 (Recent)

Australocarcinus Davie, 1887, Trogloplax Guinot, 1886

Subfamily Chasmosarcinae Serène, 1864 (Eocene-Recent)

Goneplacidae incertae sedis (Recent)

Progeryon Bouvier, 1922, Raoulia Ng, 1987, Typhilocarcinoides Alcock, 1900

Appendix B. Characters and their states used in PAUP* analysis.

1 Front with median notch: present (0), absent (1)
2 Front with median projection: absent (0), present (1)
3 Frontal teeth: present (0), absent (1)
4 Notch between frontal margin and supraorbital angle: distinct (0), indistinct (1)
5 Orbital width: narrow (0), moderate (1), wide (2)
6 Upper orbital fissure: present (0), absent (1)
7 Dorsal region: more or less distinct (0), indistinct (1)
8 Anterolateral teeth: >3 (0), 1-3 (1), 0 (2)
9 Eye stalk: short (0), long (1)
Appendix C. Input data matrix of forty-nine characters and twenty genera; missing character states indicated by {}.

<table>
<thead>
<tr>
<th>Taxa</th>
<th>Characters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camatopsis</td>
<td>0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4</td>
</tr>
<tr>
<td>Chasmocarcinus</td>
<td>1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9</td>
</tr>
<tr>
<td>Trogoplax</td>
<td>0 0 1 1 0 1 1 2 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 1 0 0 1 1 2 0</td>
</tr>
<tr>
<td>Carinocarcinoides</td>
<td>0 0 1 1 1 1 0 1 0 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 0 0 1 1 0 1</td>
</tr>
<tr>
<td>Carcinoplax</td>
<td>0 0 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 1 0 0 1 0 0 1 0 0 0</td>
</tr>
<tr>
<td>Goneplax</td>
<td>0 0 1 1 1 1 2 1 1 1 1 1 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 1</td>
</tr>
<tr>
<td>Ommatocarcinus</td>
<td>0 1 0 1 1 1 2 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 1 0 1 0 0 0</td>
</tr>
<tr>
<td>Psophyticus</td>
<td>0 0 1 0 1 2 0 1 0</td>
</tr>
<tr>
<td>Eucrate</td>
<td>0 0 1 0 2 0 1 1 1 0</td>
</tr>
<tr>
<td>Euryplax</td>
<td>0 0 1 0 2 0 1 1 1 0</td>
</tr>
<tr>
<td>Heteroplax</td>
<td>0 0 1 0 2 0 1 1 1 0</td>
</tr>
<tr>
<td>Beuroisia</td>
<td>0 0 1 0</td>
</tr>
<tr>
<td>Intesius</td>
<td>0 0 1 0</td>
</tr>
<tr>
<td>Mathildella</td>
<td>0 0 1 0</td>
</tr>
<tr>
<td>Progeryon</td>
<td>0 0 1 0</td>
</tr>
<tr>
<td>Pilumnus</td>
<td>0 0 1 0</td>
</tr>
<tr>
<td>Epixanthus</td>
<td>0 0 1 0</td>
</tr>
<tr>
<td>Pseudozius</td>
<td>0 0 1 0</td>
</tr>
<tr>
<td>Carpillus</td>
<td>0 0 1 0</td>
</tr>
<tr>
<td>Pilumnoides</td>
<td>0 0 1 0</td>
</tr>
<tr>
<td>Hypothetical Ancestor</td>
<td>0 0</td>
</tr>
</tbody>
</table>