Dissertation Summary

The Local Dialect of Northwest Paphos: Phonological Description [in Greek] (Aristotle University of Thessaloniki, 2015)

Charalambos Christodoulou*
Independent scholar, Lemesos
char.christ@yahoo.com

Abstract

In this contribution, I offer a summary of my 2015 Ph.D. dissertation from the Aristotle University of Thessaloniki on the phonological description of the local dialect of Northwest Paphos (Cyprus).

Keywords

phonology – Modern Greek dialectology – Cypriot Greek dialect – Northwest Paphos

* I would like to thank my Ph.D. committee members, Marianna Margariti-Rogka, Anthi Revithiadou and George Papanastasiou for their invaluable help during my Ph.D. studies in Thessaloniki.
1 Introduction—Methodology

In this study, I provide a description of the local variety of Northwest Paphos,\(^1\) spoken on the west coast of Cyprus, with special focus on its phonological system. This is the first attempt at an in-depth description of a Cypriot Greek (CG) local variety and is mainly based on data collected by field research from 2008 to 2014 and data that I was allowed to transcribe from the Institute of Modern Greek Studies (Thessaloniki) and the Cyprus Research Center (Nicosia).

I adopt the classic generative/derivational model (Chomsky & Halle 1968), assuming intermediate levels between an underlying representation (\(\text{ur}\)) and a surface form. Autosegmental representations are also of great importance throughout the thesis. I use an autosegmental model based on Revised Articulator Theory (Halle et al. 2000) for the phonological processes I describe.

2 Review of the Study

2.1 Aims

The main aim of this study is to thoroughly examine the phonological system of the local variety of NW Paphos. Apart from this, two additional aims are included: first, reconsideration of recent issues of CG that drew the attention of phonological theory, e.g. glide hardening, continuant dissimilation etc. Second, finding the phenomena that not only highlight the profile of this particular variety, but that can also be used as isoglosses for a classification of the geographical varieties spoken on the island.

2.2 Structure of the Thesis

Apart from the introductory and concluding chapters (chapters 1 and 9 respectively), this thesis comprises six phonology chapters (chapters 3–8) and a chapter where I provide a concise grammar of the variety, as well as a description of other levels of analysis (chapter 2). Here, I first present the six phonology chapters and I then provide some general information about the other aspects of the study. Due to space limitations the description is confined only to the most important findings of each chapter.

\(^1\) The name ‘local dialect of NW Paphos’ is taken from M. Christodoulou, who divided the island into 18 different local dialects, in collaboration with N. Kontosopoulos (1970) and D. Vagiakakos (1973).
2.2.1 Phonology Chapters

In chapter 3, I present the vowel and consonantal inventory of the local dialect and discuss which distinctive features (DFS) describe each segment more efficiently. Some of the more important remarks of this chapter are: front vowels and palatal consonants (including glide /j/) are [dorsal] and [+front]; glottal [h] is [–sonorant]; affricates are monosegmental [–continuant], [+strident]; palatoalveolars are [coronal], [–anterior], but also [+front] (see review of chapter 8); all sonorants (nasals, rhotics and laterals) are [+continuant]; tap [ɾ] and trill [r] share the same DFS and differ only regarding their timing: [ɾ] consists of one timing unit (or x), whereas [r] consists of two timing units, i.e. it is a geminate.

In chapter 4, I briefly explain why syllable-based approaches of several phonological phenomena of CG (Malikouti-Drachman 1987, 2001, 2003; Drachman & Malikouti-Drachman 1997; Harris 1996; Christodoulou 2007, among others) are in fact inadequate. Some of the main arguments against syllabic approaches and in favour of a purely phonotactic approach are presented in the following paragraphs.

Chapter 5 concerns procedures related to consonant sequences. Two-consonant sequences are divided into two subgroups regarding their C2: C + sonorant and C + obstruent. In the latter category, I propose two templates regarding the DFS [continuant]:

\[
\begin{align*}
(1) & \quad \text{a. If C + obstruent, then: } [+\text{cont.}] + [-\text{cont.}] \\
& \quad \text{b. If C + primary strident, then: } [-\text{cont.}] + [+\text{cont.}] \\
\end{align*}
\]

The first template covers the well-known continuant dissimilations (2a and 2b), sequences with /r/ + C (2c) and cases of segments that mutually change their [continuant] values in a stop + fricative sequence (2d).

\[
\begin{align*}
(2) & \quad \text{a. stop + stop \rightarrow fricative + stop: } \\
& \quad \quad \text{SMG } /\text{ektaktos}/ \rightarrow [\text{extaxtos}] \quad \text{‘temporary staff’} \\
& \quad \text{b. fricative + fricative \rightarrow fricative + stop: } \\
& \quad \quad /\text{eyr’afɔika}/ \rightarrow [\text{eyr’afikan}] \quad \text{‘enroll}_{-\text{1SG,PASS,PAST}}’ \\
& \quad \quad /\text{k’ovgo}/ \rightarrow [\text{k’ovgo}] / [\text{k’ovko}] / [\text{k’ofko}] \quad \text{‘cut}_{-\text{1SG,PRES}}’ \\
& \quad \text{c. /r/ + fricative \rightarrow /r/ + stop: } \\
& \quad \quad /\text{ef’irɔin}/ \rightarrow [\text{ef’irɔtin}] \quad \text{‘faint}_{-\text{3SG,PASS,PAST}}’
\end{align*}
\]

2 The stress mark is placed right before the stressed vowel, as I do not discuss the syllabic status of consonant sequences.
d. stop + fricative → fricative + stop:
\[\text{/enkatal'ip\thetain/} \rightarrow \text{[eŋgatal'iftin']} \text{‘abandon-3SG.PASS.PAST’}\]

The second template covers procedures with [+strident] segments as c_2: continuant dissimilations in fricative + fricative and stop + stop sequences (3a and 3b respectively) and the mutual change regarding the DF [continuant] in a fricative + stop sequence (3c).

(3) a. fricative + strident fricative → stop + fricative:
\[\text{/es'inayasa/} \rightarrow \text{[es'inaksa']} \text{‘gather-1SG.PASS’}\]

b. stop + strident stop → stop + fricative:
\[\text{/kaluptʃ'is/} \rightarrow \text{[kalupʃ'is]} \text{‘formwork carpenter’}\]

c. fricative + strident stop → stop + fricative:
Turkish bohça → [pokʃ'as] ‘bundle’

In syllable-based approaches (Malikouti-Drachman 1987: 282; Drachman & Malikouti-Drachman 1997: 59–60, among others), c + obstruent sequences are considered heterosyllabic, i.e. c_1 takes the Coda position and c_2 takes the Onset position. Moreover, segments situated in Coda must not be stronger than Onset segments.\(^3\) Syllabic accounts cannot adequately explain phonological processes involving strident consonants, as their outputs are not predicted by the aforementioned syllabic restrictions: according to those accounts an UR /kaluptʃ'is/ should have been realized as *[kaluptʃʰ'is]*, not [kalupʃ'is], and Turkish bohça should have been adjusted as *[poxtʃʰ'as]*, not [pokʃ'as].

Syllabic accounts face similar problems that have to do with three-consonant sequences as well. In cg only [+continuant] + [–continuant] + [+sonorant] sequences are permissible, e.g. [str], [mbl]. Sequences not having this structure are considered ineligible and undergo simplification. According to syllabic accounts, the segment which is chosen for deletion is the one that fails to syllabify (see for instance Malikouti-Drachman 2003). As shown in figure (4a), in a sequence /mps/, /m/ (as c_1) fails to syllabify (cg does not allow branching Codas) and is deleted. In (4b), /t/ (as c_2) cannot form a legitimate Onset with the following [ç], nor a legitimate Coda with its preceding /s/ and is eventually deleted.

\(^3\) Based on Vennemann’s (1972) Syllable Contact Law. For the notions of consonant strength and strength hierarchy, see Hooper (1976: 195 ff.) and Lass (1984: 177 ff.) among others.
Perhaps the most problematic issue emerging from syllabic accounts is that they fail to justify what consonant must be deleted in each case. For example, in a [stç] sequence (as shown above) there is no justification why \(c_2 \) is deleted, since \(c_1 \) deletion could have created a Coda + Onset sequence as well. Such cases suggest that the presence of phonotactics is necessary for dealing with simplification phenomena.

My proposal on this matter includes two phonotactic rules:

\[
\begin{align*}
\text{(5) a. } & c_1 \text{ deletion: In a non-legitimate } [+\text{cont.}] + C + C \text{ sequence, delete } c_1. \\
\text{b. } & c_2 \text{ deletion: In a non-legitimate } C + C + \text{palatal obstruent (derived from } /j/) \text{ sequence, delete } c_2.
\end{align*}
\]

These rules, not only cover every case of three-consonant sequence simplification within a word, but they also successfully predict how sequences of non-dialectal origin adjust in \(\text{CG} \) phonology, e.g. \(\text{SMG} \) [ˈenstasi] → [ˈestasi] ‘appeal’ (\(c_1 \) deletion rule), \(\text{SMG} \) [vˈarɔʃja] → [vˈarʃja] ‘shift’ (\(c_2 \) deletion rule).

Chapter 6 covers the phenomenon of gliding and all the relevant subsequent processes. In \(\text{CG} \) glide /j/ may be either underlying, e.g. /pəljoʃ/ ‘old-\text{adj.masc.}', or derived from an unstressed /i/ in particular morphophonological environments, e.g. /krasiˈa/ → krasiˈa → [kɾaʃˈa] ‘wine-pl.’. Due to the fact that /j/ never appears in surface forms,\(^4\) I propose the following constraint:

\(^4\) Newton (1972: 26, 54) reports that /j/ appears in surface forms in two cases: as the realization of /ɣ/ before front vowels, and when preceded by /m/, /n/ and /l/. Regarding the first case, the palatal allophone of /ɣ/ before front vowels is actually the fricative [ʝ], not [j]. Secondly, even though we do not have access to Newton’s recordings, previous works on \(\text{CG} \) (for instance Pantelidis 1929; Christodoulou 1968) do not confirm realizations such as [mj], [nj] and [lj]. Moreover, in modern \(\text{CG} \), sequences /mj/, /nj/ and /lj/ always surface as [mɲ], [ɲ] / [ɲː] and [ʎ] / [ʎː] respectively.
*\([j]\): Glide /j/ is disallowed in surface forms.

The first notable process that takes place after gliding is glide obstruentization: glide /j/ becomes \([-\text{sonorant}]/ before a vowel. In NW Paphos glide obstruentization occurs in the following sequences: \(/fj/\), \(/ðj/\), \(/vj/\), \(/ðj/\), \(/zj/\) and (only morpheme-internally) \(/sj/) 5 e.g. \(kəl'αθja \rightarrow [kαl'αθça]\) ‘basket\(-\text{pl.}^\prime\), \(mazj'a \rightarrow [maq'\\alpha]\) ‘kind of bush\(-\text{pl.}\). Even more important is that obstruentization is active intervocically, e.g. \(kkomp'aja \rightarrow [kʰomp'aja]\) ‘combine harvester\(-\text{pl.}\). This process contradicts Kaisse’s (1992) assumption that consonantalization of glides in CG is due to spreading of DF \([+\text{consonantal}]\) from a preceding consonant.

Other peculiarities regarding sequences with /j/ in NW Paphos include: \(/tj/\) surfaces as voiced \([ðj]\), e.g. \(sp'itja \rightarrow [sp'iðja]\) ‘house\(-\text{pl.}\), whereas \(/ttj/\) surfaces as voiceless \([ðç]\), e.g. \(ʃʃipettj'\alpha \rightarrow [ʃʃpeç'\alpha]\) ‘gunshot’; \(/tj/\) and \(/ðj/\) are realized as geminate \([j]\) by Turkish Cypriot speakers, e.g. \(monop'atja \rightarrow [monop'aj\'a]\) ‘pathway\(-\text{pl.}\); in a sequence \(/pj/\), derived palatal \([ç]\) undergoes coronalization, e.g. \(/pj'anno\) \(→ pç'anno \rightarrow [pʃ'anno]\) ‘take\(-1\text{sg.}\text{pres.}\)’; coronalization also takes place is some rare cases after three-consonant simplification, e.g. \(/ar'ostja/ \rightarrow ar'ostça [ar'osça] \rightarrow [aɾ'osca]\) ‘illness’.

In chapter 7, I present processes affecting intervocalic or initial prevocalic consonants. Perhaps the most important finding during the examination of these processes is the clear tendency of fricatives towards the designated articulation \([\text{dorsal}]\), another phenomenon that remains, so far, unreported in the literature.

\(/staf'ilin/ \rightarrow [staç'ilin] \) ‘grape’
\(kaθar'os/ \rightarrow [kaxar'os] \) ‘clean\(-\text{adj.masc.}\)’
\(ð'erño/ \rightarrow [j'erño] \) ‘beat\(-1\text{sg.}\text{pres.}\)’
\(vun'on/ \rightarrow [yun'on] \) ‘mountain’
(dorsalization also affects coronal \(/ð/\) before \(/r/\), e.g. \(/ðr'onno/ \rightarrow [yɾ'on:o] \) ‘sweat\(-1\text{sg.}\text{pres.}\)’

Finally, chapter 8 deals with palatalization processes. Three phenomena are examined under the term ‘palatalization’: 1. Velar palatalization: velars become palatals when preceding front vowels, and a sequence velar + /j/ undergoes fusion, e.g. \(epl'iş đenken/ \rightarrow [epl'iş:čen] \) ‘wash\(-\text{3sg.}\text{pass.}\text{past}\)’, \(m'ayja \rightarrow [m'aja]\)

\[5\] \(/zj/\) and \(/sj/\) may undergo palatalization as well (see chapter 8 review in the following paragraphs).
Coronalization: voiceless palatals [c] and [ç] become palatoalveolars [ʧ] and [ʃ] respectively, e.g. \textit{epl'iðiçen} \textrightarrow [epl'iðiçen] ‘wash-3SG.PASS.PAST’;

Alveolar palatalization: sequences with an alveolar strident + /j/ merge into a palatoalveolar, and sequences /lj/ and /nj/ merge into palatals [ʎ] and [ɲ] respectively, e.g. \textit{f'esja} \rightarrow [f'esi\textacute{a}] ‘fez-pl.’; \textit{sinj'â} \rightarrow [sinj'â] \rightarrow [sinj'â] ‘pan-pl.’

I propose that these three phenomena are connected through the DF [+front]: palatal consonants (including glide /j/), palatoalveolars and front vowels form a natural class sharing this particular DF. Combined with the DF [dorsal], [+front] denotes consonants produced with the front of the tongue body touching the hard palate, i.e. palatals. On the other hand, combined with the DF [coronal], [+front] denotes consonants produced with the blade touching the area behind the alveolar ridge, while the front of the tongue body approaches the hard palate, without touching it, i.e. palatoalveolars.

Having these assumptions in mind, I consider velar palatalization as a case of assimilation, where [+front] is spread from a front vowel to its previous velar. During coronalization, a (dorsal) palatal changes into a (coronal) palatoalveolar, without losing its DF [+front]. Coronalization is not considered as an assimilation process, as it may occur before any vowel (e.g. /pax'â/ \rightarrow pač'a \rightarrow [pa'ja] ‘fat-ADJ.FEM.’). Studies on similar phenomena in other languages show that coronalization is related to the special (articulatory, acoustic, perceptual and even typological) properties of palatal consonants, not the spreading of some DF by an adjacent segment. Finally, alveolar palatalization is considered as a kind of fusion, as the output of a sequence alveolar + /j/ is a [+front]—alveolar or palatal—segment.

2.2.2 Non-phonological Aspects of the Study

In a special chapter (chapter 2), I provide a general account of the main typological characteristics of the local dialect, describing its morphology and syntax as well. Through this examination, I was able to identify several phenomena not reported in the literature to date, for instance, the special use of morpheme /-\textacute{eni}/ denoting the main ingredient of a pie, e.g. [kolotʃ'eni] ‘pumpkin pie’ (cf. [kolokot'î]/[kolok'opit\textacute{a}] in other CG varieties), and the use of /\textacute{ien}/ + (non-past) perfective periphrasis, often preceded by temporal con-

6 Some rare coronalization cases of voiced [j] are attested in NW Paphos, but only after labial /v/: luv'â \rightarrow [luvʒ'â] ‘kind of bean-pl.’; av'î \rightarrow [avʒ'î] ‘dawn’.

7 [ɲ] appears as geminated due to a peculiar gemination rule, where ts, z, ž, ň geminate in intervocalic or initial (prevocalic) position.

8 I follow the assumption that coronals may be specified with tongue body features (see Flemming 2003).
junction /ˈaman/ ‘when’. The whole periphrasis “aman ˈien + perfective’ denotes a habitual action in the past (8a). Interestingly, the negative particle /mˈen/ and clitics always appear in-between the members of the periphrasis (8b).

(8) a. ‘aman ˈien kaxarˈii, ˈevalles krasˈin mˈesa.
 ‘when’PART. ‘clean-3SG.PERF.’ ‘put-2SG.IMPERF.PAST’ ‘wine-ACC.SG.’ ‘inside’
 ‘Whenever it was cleaned, you would put wine inside’

 b. ‘aman ˈien mˈen ˈevrusin nerˈon, […]
 ‘when’PART. NEG. ‘find-3PL.PERF.’ ‘water-SG.ACC.’
 ‘Whenever they did not find water […]’

In each chapter, I also make observations regarding the geographical distribution of several CG phenomena. As regards NW Paphos, despite the fact that some phenomena occur exclusively in this area, the great number of characteristics being shared with other local dialects suggests that this particular variety belongs (or belonged) to a broader western zone within the island.

3 Conclusion—General Remarks

In this thesis, I provide a description of the phonological system of the NW Paphos local dialect. Through this examination, I was able to reveal some new aspects—not only phonological—of CG, reconsider some previous accounts on various phonological phenomena, and make some preliminary remarks on CG dialect geography.

References

