Inside Jesuit Classrooms: Students’ Notebooks from the Austrian Province of the Late Sixteenth Century

Gábor Fürköli
Institute of Philosophy and Sociology, Polish Academy of Sciences, Warsaw, Poland
gabor.forkoli@ifispan.edu.pl

Received 16 December 2022 | Accepted 21 February 2024 | Published online 23 April 2024

Abstract

In the sphere of education, early modern Jesuit documents prescribed a large variety of didactical methods. As a result, Jesuit education was perceived as facilitating a dialogue between traditional Scholasticism and humanism or scientific progress. However, complaints from the first half-century of the order indicate that Jesuit schools fell short in terms of their compliance with prescriptive regulations. Indeed, non-Jesuit scholars often considered the order to be conservative traducers of Renaissance scholarship. To assess these contradictory evaluations, this article proposes to scrutinize manuscripts produced by students during their philosophical studies at the colleges of Vienna, Olomouc, and Graz, falling within the timeframe of c. 1580–90. Here, I look to argue that, even before the universal presence of comprehensive Jesuit textbooks, the teaching of philosophy was not only surprisingly unified within the province but new scientific and scholarly developments, including the Gregorian Reform and the debates around Copernican views, were also presented in the Jesuit classroom.

Keywords

Introduction

From the beginning, Jesuit education enjoyed a reputation for being both effective and responsive to the challenges of its time. In theory, the methods employed by Jesuit schools were of a varied character; they were often ascribed the term *modus parisiensis*, which implied a rather spontaneous manner of lecturing, one that was detached from the direct exegesis of authoritative texts. This approach also saw strong engagement on the part of the students, involving a multiplicity of exercises. And yet, in the first half-century of the order, complaints made often concerned the teaching of philosophy and sometimes theology as well. These same complaints indicate that the production of lecture notes posed difficulties for the students. After the decline of the medieval *pecia* system, which assured a relatively cheap reproduction of texts with a strictly controlled quality for students, many of them ended up obtaining handwritten copies of study materials under less regulated circumstances. However, the case of Jesuit schools was exceptional in that their students were bound by very specific rules for note-taking. In a magistral article, Canadian historian Paul Nelles meticulously reconstructed the note-taking practices of early modern Jesuit schools. Basing his research on the Constitutions of the order and the reports and correspondence of prominent Jesuit officials, such as Juan Alfonso de Polanco (1517–76), Nelles’s analysis identified different types of notebooks which accorded with the five phases that students had to pass through in...
order for them to formally master their course material, such as the *praelectio*, *lectio*, *repetitio*, *disputatio*, and *compositio*. Regarding lectures, the three first stages were crucial. During the *praelectio*, students were supposed to read the assigned text by themselves before the professor would comment on them. In this phase, students copied the text or wrote it down after dictation. This notebook was different from the actual lecture notes: in class (*lectio*), students wrote down the teacher’s commentaries on loose sheets, and later, during their *repetitio*, in small groups, they copied them into a more organized notebook. Furthermore, pupils were expected to summarize their notes at the end of their studies in a more concise manuscript called the *scripta brevius*. This process of imprinting, coupled with the structuring of knowledge, relied on note-taking, which was far from being a merely mechanical process; it required a deep understanding on the part of the students. However, there are other sources on Jesuit didactics that do not indicate such an optimistic appraisal.

In practice, professors of philosophy often limited themselves to dictating from the textbook (at least, according to some reports). Solutions were proposed to address this deficiency very early on. For instance, Benito Pereira (1536–1610) suggested in 1564 that pupils should write down only the essential keywords in class, and others, like Jerónimo Nadal (1507–80), urged universities to print textbooks. However, Pedro Villalba (dates unknown), the provincial of Castile, complained in 1587 that students of philosophy and theology were being overwhelmed with excessive dictation. In the 1570s, the Jesuit superior general was informed that in the Province of Upper Germany, lectures entirely lacked explanation. Similar complaints were addressed from Paris in 1579, from Tours in 1577, and from Pont-à-Mousson in 1584.4

6 Pedro Villalba to Superior General Claudio Acquaviva, June 20, 1587. MPSI VII, 607.

An analysis of actual notebooks made by the students of Jesuit professors could complete Nelles’s thorough discussion on prescriptive documents. This paper aims to reconstruct the practice of philosophy teaching in certain Jesuit classrooms. To do so, I discuss manuscripts produced in class by pupils attending Central European Jesuit schools, such as Vienna, Olomouc, and Graz in the 1580s and the 1590s, which are today to be found in Hungarian collections. Observing their structure and their visual elements, I intend to make some evaluation as to whether dictation played an exclusive role in their production or whether the professors engaged in more exigent interactions with their students.

In addition to the problem of note-taking, this inquiry is also an opportunity to observe the adaptability of early Jesuit education to scientific progress. Despite their prevalent resistance to Copernican astronomy, the Jesuits were, in fact, open to mathematical and astronomical novelties: they promoted the Gregorian Reform of the calendar, and thanks to their worldwide missions, they contributed to geographical discoveries. In the seventeenth century, new experiments appear in Jesuit textbooks, like in the richly illustrated philosophy manual of Melchior Cornaeus (1598–1665) from Würzburg. However, there are serious contradictions in the literature about the innovative content of Jesuit education. For instance, the relationship between the education of the order and humanism was problematic. It is obvious that humanism had an impact on their method of teaching classical letters, poetics, and rhetoric. On the other hand, Jesuits often found themselves in a defensive position vis-à-vis humanist criticism, and Jesuit commentaries on Aristotle, compared to Italian Averroists and humanists, were considered far too conservative. According to my hypothesis, the in-class discussion of intellectual novelties implies a stronger dynamic and a deeper reflection than what unpleasant dictation could have offered, and this should be detectable both in the contents and in the structuring elements of the notebooks.

12 Melchior Cornaeus, Curriculum philosophiae peripateticae (Würzburg: Zinck, 1657); on the author, see Paul Richard Blum, Studies on Early Modern Aristotelism (Leiden: Brill, 2012), 126–35.

Sources: From Printed Textbooks to Handwritten Notebooks

After its secession from Germania Superior in 1563, the Austrian Province of the Jesuit order extended its jurisdiction from the colleges of Vienna, Prague, and Ingolstadt to the Jesuit schools of the Polish–Lithuanian Commonwealth (Braniewo, Pułtusk, Vilnius, Jaroslaw), the Kingdom of Hungary (Trnava), and Transylvania (Cluj). Compared to the College of Vienna, founded in 1551, the colleges of Olomouc (1566) and of Graz (1573) represented new institutions of what would become a rapidly developing province.

I propose to discuss the philosophical curriculum of these three establishments by examining three groups of notebooks kept today in the Archdiocesan Library of Esztergom and in the University Library of Budapest. The first and the second group of student notebooks come from the Jesuit colleges of Vienna and Olomouc, where they were written down in the late 1580s. Some of these students later occupied important positions in the Catholic Church of the Hungarian kingdom as canons of Esztergom, the capital of the Hungarian primate, from where the actual center was removed to Trnava (Slovakia) due to the Ottoman conquest. Ferenc Szelepsényi Pohronc (d.1611), for instance, who worked later as a teacher and was appointed a canon in 1590 in Trnava, had been taught in Vienna by Professor Louis Hantsam (1557–95), a Jesuit born in Kortrijk (Belgium). Szelepsényi Pohronc studied philosophy under his tutelage between December of 1585 and January of 1587, according

16 Lukács, *Catalogi personarum*, 685.
to the dates registered in the three handwritten volumes he left behind.17 In Olomouc, Márton and Simon Bánovszky attended the classes of Johannes Grasser (1562–1608), a teacher from Bavaria.18 When Grasser temporarily left Olomouc to teach philosophy in Prague (1590–92), the Moravian Thobias Prochelius (1554–99) oversaw the completion of his course.19 Márton and Simon were presumably brothers. Their lessons commenced in April 1588 and finished in December 1589. Only Simon (d.1634) is known to church history: he was appointed rector of the College of Trnava in 1592 and became canon of Esztergom in 1601.20 The two Bánonvskiys commissioned a copyist, who went by the curious name of Christophorus Sefer Tartarus, to produce a manuscript consisting of four volumes.21 In Olomouc, Sefer studied with three other students similarly designated as Tartars in the records.22 Despite the extreme vagueness of the term Tartar, it cannot be excluded that they came from an Eastern European or Baltic territory where the remains of the Golden Horde were still present and where Catholic missions could have been engaged in the conversion of some of their communities.23 After Olomouc, he was reported to have gone to Hungary, where he worked as a school teacher

17 Prolegomena in universam Aristotelis logicam, Vienna, 1585–86, Archdiocesan Library of Esztergom (hereafter ALE), Ms. II. 226a (968 pp.); Physicorum Aristotelis libri octo, Vienna, 1586, ALE, Ms. II. 274 (335 ff.); Commentarius in libros Aristotelis [De anima, Metaphysica], Vienna, 1586–87, ALE, Ms. II. 226b (365 ff.).

18 Lukács, Catalogi personarum, 678.

19 Lukács, Catalogi personarum, 758.

20 Kollányi, Esztergomi kanonokok, 234.

21 In universam Aristotelis Stagiritae logicam, Olomouc, 1588, ALE, Ms. II. 227a (belonged to Márton Bánovszky; 521 ff.); In universam Aristotelis Stagiritae physicam auscultationem commentaria, Olomouc, 1588–1589, ALE, Ms. II. 227b (belonged to Simon Bánovszky; 505 ff.); In universam Aristotelis Stagiritae naturale ausculationem commentaria, 1590, ALE, Ms. II. 227c (belonged to Márton Bánovszky, unnumbered); In organum Aristotelis Stagiritae principis peripateticorum Reverendi magistri Joannis Grasseri commentaria, 1588, ALE Ms. II. 227d (belonged to Simon Bánovszky, 363 ff.).

23 To the Polish mind of the sixteenth century, for example, many ethnicities of Eastern European origin counted as Tartar. See Katharina N. Piechocki, “Discovering Eastern Europe: Cartography and Translation in Maciej Miechowita’s Tractatus de duabus Sarmatiis (1517),” in Polish Culture in the Renaissance: Studies in the Arts, Humanism and Political Thought, ed. Danilo Facca and Valentina Lepri (Florence: Firenze University Press, 2013), 53–69.
He likely accompanied the Bánovszky brothers back to Hungary, where they helped him in his career. In 1598, he also appeared as a baccalaureate at the University of Vienna, where he identified himself as a Moravian. Regarding this peculiarly emerging career, we may imagine that in Olomouc, this young man of exceptional origins had been a needy student who offered his scribal services in exchange for the support of his financially more privileged fellow students.

Amongst these Catholic priests, there is an interesting exception: a young Lutheran nobleman, Péter Révay (1568–1622), who studied at the Jesuit School of Vienna under the supervision of Joannes Mollensis (1560–1613), a Jesuit born in Antwerp. For religious reasons, Révay would not have been allowed to graduate in Vienna, and he had to attend the Protestant Strasbourg, where he was a pupil of the elderly Johannes Sturm (1507–89); and in Hungary, he became an important politician and historiographer whose works, the Commentarius (1613) and the De monarchia (1659) related the history of the kingdom in the defense of the privileges held by the Hungarian nobility. He arrived in Vienna in 1585, yet he only began his studies of philosophy on January 5, 1587, finishing them in September 1588 after having completed three large volumes of annotations.
The third group of manuscripts was conceived in Graz in 1598–99. In contrast with the previous sources, it includes two manuscripts made by a professor, the young Hungarian Jesuit Péter Pázmány (1570–1637), who later assumed a leading role in the Hungarian Counter-Reformation. While the copy of his dialectic is a duplicate made by a different hand, his *Physics*, fortunately, survives not only in his autograph, but also in a version made by one of his students, who likely followed the course that the teacher commenced on January 13, 1599, and finished on December 11. It is remarkable that Pázmány’s autograph physics textbook preserves marginal notes containing additional information about respective matters. When he dictated the textbook to his student, most of them were incorporated into the main text. This pupil might be identified as a certain Henricus Scultetus (dates unknown), but the manuscript was also used by a certain Johannes Ostorp, who studied in Graz in the same year.

The manuscripts from Vienna and from Olomouc share striking similarities. With a few exceptions, they almost cover the complete Aristotelian corpus in logic, physics, and metaphysics. In the manuscripts from Vienna and Olomouc, the structure, the division into chapters, the diagrams of logic, and the illustrations in geometry or in astronomy enable us to identify two of the textbooks used by the teachers. Logic was taught from the *Leuven Commentaries* on Porphyry’s *Isagoge* and to the Aristotelian corpus, while mathematics was based on Christopher Clavius’s (1538–1612) commentary on Sacrobosco.

31 *ulb*, Ms. F 6,1, fol. r’, fol. 420r (On this page, the year is indicated as 1598. Probably, it is an error.)

First published in 1535 and then subsequently reprinted in 1547, 1553, and 1568, the *Leuven Commentaries* were composed in response to the influence exercised by the *Collegium trilingue* on the local intellectual life. Their chief editor, Joannes Stannifex (d.1536), together with his colleagues, defended traditional peripatetic logic and supported a moderate realism over the humanist criticism incarnated in this new institution. Nevertheless, they managed to integrate some of the results of humanist dialectic, especially if they were at least tacitly favorable to nominalism. One such author, treated with constructive criticism in the *Leuven Commentaries*, was Rudolph Agricola (1443–85), who intended to transform the classical learning of *topoi* into a more flexible system, one that would manage arguments and examples in the service of persuasion. In terms of personal connections, the relationship between the Society of Jesus and Leuven University was especially close in the mid-sixteenth century. Not only did Robert Bellarmine (1542–1621) teach and preach at the university, but it was also in Leuven that the Jesuit Diego de Ledesma (1519–75) entered the order in 1556, who would later address several reports about teaching philosophy to Superior General Laínez.

In his own discipline, the work of Jesuit mathematician, Clavius, had a similarly central role at the Roman College; he took part in Antonio Possevino’s (1533–1611) project, the encyclopedical bibliography *Bibliotheca selecta*, and he elaborated educational reforms for mathematics, intending to cement the position of mathematics within the philosophy curriculum. In the first half

of the seventeenth century, his book on Joannes de Sacrobosco’s *De sphaera* (c.1195–c.1256), the main source for the teaching of mathematics, geometry, and astronomy at medieval and early modern universities, was an uncontested success at Italian universities.36 Like many other Jesuits, Clavius maintained an extended network of pupils all around Europe and beyond, which also explains how his textbook was transferred from Italy to eastern Europe: for instance, James Bosgrave (c.1548–1623), an English Jesuit, who later worked in Olomouc as well, was one of his students in Rome.37

These sources illustrate very well how the obligation of a Jesuit professor to change his assignments frequently within the same province (*instabilitas loci*) ensured both high standards and uniformity throughout the schools of the order.38 For some of the teachers, whose names are recorded in the manuscripts, their time at Graz represented an important moment in their career. Invited by Archduke Charles II, the regent of Styria, the Jesuits founded their college of the town in 1572. Elevated to the rank of university in 1585, the school became a rival of the protestant *Landschaftsschule*. But unlike this institute, designed for the offspring of Styrian nobility, by the end of the century, the Jesuit college was receiving students and teachers with an international background.39 Grasser studied theology here in 1587, while Hantsam, who had entered the order in Leuven, was the professor of theology between 1589 and 1590 at the

same school. This is where Pázmány was appointed professor of philosophy on October 26, 1597. He kept this role until 1603, when he returned to Hungary. He would go back in 1606 to teach theology for several more years. His surviving manuscripts are exceptional because they are original textbooks he authored. His logic represents an eclectic, moderate realism, based not only on Jesuit commentators, such as Francisco de Toledo (1532–96) and Pedro da Fonseca (1528–99) but sometimes also on humanists like the Paduan Jacopo Zabarella (1533–89) whom Pázmány followed in criticizing the Arabic and medieval traditions of Aristotle commentaries. As for his writings on physics, Pázmány could refer to the already existing Coimbra Course, the first Jesuit textbook series being progressively published at the time. Very likely, Pázmány later thought to publish these two works as textbooks for the new University of Trnava that he would found in 1635 as archbishop and cardinal. However, this project failed for reasons unknown.

Commentary and Illustration

Whether the different didactical methods of the modus parisiensis were applied in practice or not, these notebooks foreground one mode of knowledge transfer in particular: the recording of the textbook after dictation or the copying of another manuscript. It is safe to assume that all the notebooks discussed in this article—with the exception of Pázmány’s own copy of his logic textbook—were produced before the teachers started explaining the subject matter, i.e., during the praelectio. One should not wonder that students did not keep loose sheets with notes taken during the lectio, particularly when considering the ephemeral nature of these types of notes.

40 Lukács, Catalogi personarum, 678, 685.
41 This period of his teaching is attested by his printed disputations. See Johann Andritsch, Studenten und Lehrer aus Ungarn und Siebenbürgen an der Universität Graz (1586–1782): Ein personengeschichtlicher Beitrag zur Geschichte der Karl-Franzens-Universität in der Jesuitenperiode, Forschungen zur geschichtlichen Landeskunde der Steiermark 22 (Graz: Verlag der Historischen Landeskommission, 1965), 27, 252–55.
However, it is more significant that they kept no organized notes made on the basis of loose sheets during the *repetitio* either. Even if this third type of notebook, as described by Nelles, existed in the practice of the colleges of Vienna, Graz, and Olomouc, students must have considered them to be less useful than dictated textbooks. Assuming that the *praelection* was the phase when these manuscripts were written down is also supported by the fact that the copyists dated the main sections after finishing them. For instance, it is thanks to these dates that the chronology of Révay’s studies can be established in detail, and often down to the very hour. The manuscripts of Graz are especially informative because Pázmány, as a professor of philosophy, used two kinds of date in his manuscript: first, he recorded the date when he finished phrasing the chapters of his textbook, and then he added another date on the margins after discussing the section in class (usually after an interval of six months). Yet the copyists never made a distinction between the day on which the teacher had finished dictating the text and the day on which he had finished commenting on them. It is probable that the exegesis of the text, if there was time for it, was carried out as soon as a section of the dictated text had been finished in the student’s notebook.

In spite of this disappointing monotony of practice compared with the diversity required by Jesuit prescriptions, the notebooks allow us to assess the personal input of the professors on the subject matter. Despite their common sources, the respective units of the manuscripts from Vienna and Olomouc sometimes prove to be very different in terms of their content and the authorities to which they refer. The teachers used common textbooks for guidelines, yet they gathered information from other works as well. Based on comparisons, the teachers from Olomouc and Vienna can be assumed to have proceeded autonomously and creatively.

45 For example, *ULB, F 6,1*, fol. 1r: “In octo libros Aristotelis de Physico auditu Graecii Junii 1598/ In scholi coepi 12 Januarii 1599.”

46 This can be illustrated with a passage where the *Leuven Commentaries* discuss the authorship of the *Isagoge*. The authors apply the Aristotelian division of the four causes on the existence of the work, the author being its efficient cause, i.e. its author: “Causa efficiens ex nomine et genere declarator, cum subditur, Porphyrij Phoenicis. Fuit enim Porphyrius patria Phoenix e Tyro, philosophus Atheniensis, Plotini discipulus, ac Platonicae sectae in alis imitator et defensor” [As it is said below, the efficient cause is declared by name and origin as Porphyry of Phoenicia. Being from Phoenicia, his hometown was Tyrus, he was the disciple of Plotinus, the Athenian philosopher, and he was an imitator and a defender...]

Downloaded from Brill.com 05/23/2024 04:26:11PM via Open Access. This is an open access article distributed under the terms of the CC BY-NC-ND 4.0 license. https://creativecommons.org/licenses/by-nc-nd/4.0/
Whereas the outcomes of the dictation may vary on a large scale, it seems that the Hungarian students in question elaborated the illustrations of their manuscripts with almost equal care (with the sole exception of Pázmány’s student in Graz, whose teacher had made little use of visual materials). Students had different possibilities for including scientific or educational illustrations—“epistemic images”—in their notebooks. Typical examples of these visual elements were branching diagrams, some of which had been canonized by tradition, such as the famous Porphyrian tree illustrating the Aristotelian categories, while others were shaped by the users’ more individual or spontaneous intentions. Beyond the usual geometric figures and the illustrations of Ptolemaic astronomy, textbooks, and notebooks may feature, especially from the seventeenth century onwards, illustrations of scientific novelties, such as the drawings of microbes discovered with microscopes, and the
depictions of particles and magnetism. Sometimes, these illustrations were invested with an allegorical or emblematical value by serving as mnemonic aids or even as sources of amusement for students. The quality of these drawings could be surprisingly elaborate, and some students even bound or glued engravings into their notebooks. In the Jesuit context, illustrations of experiments or complex mechanisms could also facilitate the contemplation of the creation and the visualization of religious matters via ingenious machines, the use of science described as “material piety” by Nuno Castel-Branco.

In the sources of the present inquiry, these illustrations include the usual diagrams of logic—the pons asinorum, Porphyrian trees, or the tabula oppositiorum—depictions of the spheres, the orbits, and the tropics in astronomy, illustrations for optical phenomena, and several other diagrams more specific to the printed textbooks used by Jesuit teachers. The presence of these figures in the notebooks sheds light on how the manuscripts were produced. However, it is not impossible to imagine that a pupil could reproduce a simple branching diagram after the teacher’s dictation. Indeed, the quality of their execution in the notebooks, which were often outstanding, indicates

that students had before them a handwritten or printed original while copying the same. This excellent quality can be observed on the charts, such as the branching diagrams and the different versions of the bridge of asses featuring ornate bordures and rubrum,55 not to mention the astronomical illustrations depicting solar and lunar eclipses, the tropics, the celestial spheres, and other aspects of the cosmic structure—these are particularly elaborate in one of the Olomouc notebooks.56

Following the \textit{Leuven Commentaries}, the students of Vienna and Olomouc drew a special version of the Porphyrian tree in their notebooks (Figure 1). Originally, Porphyrian was used to illustrate the \textit{scale of being}, i.e., the relationship between being, genus, and species as described in the \textit{Categories}. However, the version of the \textit{Leuven Commentaries} abandoned the usual dichotomic division of the levels of the tree, and instead, they chose to embrace an entire hierarchy of beings: from rocks through plants and animals to spirited creatures, including humans and angels. If we compare this figure to the examples of Paul Richard Blum’s seminal article, this choice had a metaphysical stake: a Porphyrian tree illustrates either the abstract terms of the human mind or the levels of ontological reality, but the two options imply two different philosophical positions.57 For instance, a traditional tree does not indicate individuals, like the name of Socrates or Peter, because, in terms of logic, it is impossible to accumulate so many predicaments (human, male, having brown hair, philosopher, etc.) that they would suffice to define a particular person. However, this Porphyrian tree features the names of the angels Michael, Gabriel, and Raphael. Following Blum’s argument, this implies that the figure in the \textit{Leuven Commentaries} does not aim to illustrate how predicaments can be added to a substance but to classify the elements of reality according to different categories. Having an encyclopedic goal to describe the chain of beings, this optimistic realism enabled logic to anticipate metaphysical problems. This must be kept in mind while evaluating the completeness of the discussed curricula. For instance, Révay was going to abandon the study of metaphysics, since he was to leave for Strasbourg.58 Nevertheless, he studied

55 ALE Ms. ii. 226a, fol. 293v–v; Ms. ii. 227a, fol. 253v, fol. 304v, fol. 308v, fol. 310v; Ms. ii. 227d, fol. 204v, fol. 207v, fol. 209v, fol. 215v.

56 ALE Ms. ii. 227c, passim (most folios are unnumbered).

58 Joannes Mollensis started explaining metaphysics on September 1st, 1588 (ALE, Ms. ii. 2703, unnumbered leaf); by the end of the same year, Révay was already in Strasbourg (Bónis, \textit{Révay Péter}, 10).
the nature of visible and divine beings when his teacher explained universals to him in Vienna. Similarly, Pázmány, who did not write any textbook on metaphysics, referred to metaphysical works on several occasions in his logic, including Fonseca’s commentary and others.\(^5\) In this sense, metaphysics is considered a divine science, one that discusses the ontological status of the deity in its relation to inferior beings.

Amongst numerous others, the *Leuven Commentaries* contain another conspicuous diagram, which reveals, in my judgment, the same ambitious project to transform dialectic into a comprehensive propaedeutic to universal knowledge (Figure 2). It is a tree-like structure presenting different kinds of

\(^5\) The occurrences of Fonseca’s *Commentarii in Libros Metaphysicorum Aristotelis*: Pázmány, *Opera omnia*, 1:23, 47, 53, 57, 64, 65, 73, etc. In Graz, Pázmány touched metaphysical problems also as a chair of disputations. See József Simon, “Az analógia elve Pázmánynál és Suáreznél [The principle of analogy in the works of Pázmány and Suárez],” *Különbség* 20, no. 1 (2020): 139–62.
habits and dispositions. It is connected to a commentary about the *Categories* where Aristotle discusses the concept of quality. Disposition and habits are here two slightly different notions: whereas a disposition can be easily changed, for example, the health of a person, habits are more firmly established and deeply rooted in one’s personality: they include knowledge and virtue (*Categories* 8, 8b25–9a15). This simple discussion of the topic vaguely resembles this complex diagram. It is true that Aristotle brings up the notion of habit in other works as well. In *De anima* (2.5, 417a–418a), he explains how a potential quality becomes an actuality when a person exercises their corporal or intellectual skills, and in the *Nicomachean Ethics* (10.10, 1179a–1180a), he discusses how moral virtues are to be acquired through the formation of good habits. However, this diagram features not only simple bodily or moral dispositions but also an entire taxonomy of sciences as intellectual habits. This corresponds to Aristotle’s division of disciplines into theoretical (theology, philosophy, mathematics),

60 In the *Metaphysics* (5.20, 1022b12–14), Aristotle makes no difference between disposition (like health or illness) and habits in terms of permanence. About habits in Scholasticism, see Nicolas Faucher and Magali Roques, “The Many Virtues of Second Nature: Habitus in Latin Medieval Philosophy,” in *The Ontology, Psychology and Axiology of Habits (Habitus) in Medieval Philosophy*, ed. Nicolas Faucher and Magali Roques (Cham: Springer, 2019), 1–23.
practical (ethics, politics), and productive arts (*Nicomachean Ethics* 6.2–8, 1139a–1141b), though it contains a remarkable addition that Christianizes the peripatetic system. While Aristotle only discusses inborn qualities and acquired habits, the *Leuven Commentaries* also mention inspired (infusus) dispositions, such as faith, hope, and charity. Although the explication text added to the diagram makes some efforts to delimitate the discussion to the proper subjects of dialectic and to avoid being too involved in moral philosophy, psychology, or theology, the textbook uses the term ‘habits’ to anticipate these topics. Accordingly, the tree-shaped diagram becomes a tool for gathering preliminary information about them.61

Humanist Sources and Knowledge Management in Scholastic Context

The epistemological optimism of Catholic realism implied an eclectic approach, which considered dialectic as a promoter of encyclopedical goals. In this regard, Catholic realists were also open to erudition gathered by humanist scholars, who were normally critical with respect to realism and scholastic methods. The diagrams of the *Leuven Commentaries* contain remarkable additions to medieval illustrations, and they can be regarded as dialectical expansions of the various subjects. In the manuscript dictated by Johannes Grasser in Olomouc, the above-mentioned diagram of the substantial predicaments is augmented with an interesting observation on mixed substances (distinguished from simple substances, such as the four elements). The note becomes a copious list of natural and artificial materials, objects, and phenomena, considered as mixed instances of fire, water, earth, and air:

Mistum etiam potest dividi in perfectum, et sunt omnia quae ex terris oriuntur, chalybs, ferrum, lapides, liquores, fontes, flumina, sanguis, virum, lac, mel, etc./ Et in imperfectum ut sunt omnes impressiones et exhalationes sive sint eae ignitae, ut stipulae ardentae, aeges, dali, sydus volans, candelae, trabes, columnae, teretes lanceae, clypei, globi, faces ignitae, pyramides, draco volans, quibus adduntur cometes, galaxia, sive

61 Although Pázmány's manuscript is more parsimonious in the use of *arbor* than the manuscripts based on the *Leuven commentaries*, it dedicates disputations 5 and 6 to the habits and the taxonomy of sciences: Pázmány, *Opera omnia*, 1:615–82.
This catalog of substances had a wide textual tradition. Although the catalog was canonic in terms of its peripatetic meteorology, some assumptions can be made about its closest potential sources. The list can also be found in the Protestant humanist milieu: in Basel, Oporin published at least two prints containing it. The first one is Hieronymus Wildenberg’s textbook about logic, natural philosophy, and moral philosophy, which lists many of these terms in the section about meteors. The other is the De emendata structura latini sermonis, the Latin grammar of English humanist scholar Thomas Linacre (c.1460–1524), transformed into branching diagrams, with some of them illustrating the eight parts of speech, hence the interest in nouns. The diagram, indicating a similar list of materials, belongs to a larger tree featuring substances, which is similar to (but not identical with) that of the Leuven Commentaries. On a literary level, the most likely source of Grasser’s annotation is a commentary on the

62 ALE, Ms. ii. 227a, fol. 209r.
63 Hieronymus Wildenberg, Totius philosophiae humanae in tres partes, nempe in Rationalem, Naturalem, and Moralem digestio (Basel: Johann Oporinus, 1558), 192–98.
64 Thomas Linacrus, Corpus emendatae structurae Latinis sermonis [...] in typos aliquot luculentissimos contractum per Ioannes Ruthenum Constadianum (Basel: Johann Oporinus, 1551), xl.
Categories (1513) written by the Dutch humanist Joannes Murmellius (c.1480–1517), also published as an appendix of Joannis Caesarius’s (c.1468–c.1550) Dialectic in several instances. Whatever textbook the Olomouc teacher used here, it must have established a link between the dialectical unfolding of a subject and the Aristotelian meteorology explaining the generation of materials through mixture and exhalation.

Commenting on the same diagram of predicaments, Grasser found it important to add a remark on the division of animate beings. Between the categories of plants and animals, Grasser acknowledged a group of transitional beings, the zoophytes:

[Note. Sentient and animated bodies can be divided into animals and zoophytes, whose nature is between plants and animals, such as oysters and sponges, which can be considered neither plants nor animals because it is observed that they perceive using their vegetative soul, but they avoid moving forward. Budé calls them plant animals or animal plants.]

The source of this note is indeed Guillaume Budé (1467–1540) as indicated in the manuscript: surprisingly, it comes from the annotations on the Pandectae of the humanist jurist. In this section, Budé commented on the possibility of the generation and regeneration of different species in the context of inheritance law. It seems that the philological approach of Budé’s exegesis
enabled teachers to use his book to increase the vocabulary of their students in fields other than law.

In the Leuven Commentaries, we would look for these examples in vain, and no other manuscript contains them, except those to be found in the Olomouc notebooks. Presumably, these notes were Grasser’s own contributions to the subject, and there are several others of them to be found that comment on diagrams.69 These could be assessed as proof of the detailed and high-quality in-class explanations that were being provided. It would be difficult to imagine the work of the students as mere copying from dictated compendia. Aristotelian dialectic was rather used as a pretext to unfold the scientifically describable universe.

Copiousness is present in Clavius’s commentary on Sacrobosco in a very particular way, this time more focused on the richness of verbal expression (copia verborum). The literature duly presents Clavius’s role in the professionalization of mathematical studies. Less emphasized is the fact that he also argued for the popularization of the discipline amongst non-professionals as well. Remarkably, Clavius discusses mathematics in the context of the teaching of classical languages and rhetorical skills, which is explicit even in the title of his pedagogical treatise (Oratio de modo promovendi in Societate studia linguarum politioresque litteras ac mathematicas).70 He also argues that it must be a part of the versatile culture of a learned person and a gentleman. In the Methodus quo disciplinae mathematicae in scholis Societatis possent promoveri, his report, written at the request of Superior General Mercurian, he stresses that mathematics can not only contribute to the comprehension of other disciplines but also that it is very much appreciated in courtly conversations.71 In his commentary on Sacrobosco, he develops this idea further. According to the introduction, the usefulness of astronomy and mathematics prevails over metaphysics, natural philosophy, theology in the description of the created world, medicine, navigation, the computus (the calculation of the date of Easter), cosmography, and politics.72 A most interesting section concerns the role of mathematics in understanding poetry:

69 For example, in the different versions of the pons asinorum, a diagram used to evaluate the validity of the various types of syllogism: ALE Ms. 11. 227a, fol. 304r, fol. 308v, fol. 301v.
70 Gorman, Scientific Counter-Revolution, 18–22; Romano, La Contre-Réforme mathématique, 94–95; Baldini, “Academy of Mathematics ...,” 52.
Quid porro poetae efficient, si hac praecella disciplina essent prorsus destituti? Nam quid eorum poemata, aut scripta praecellari, aut egregij habent, quod astrorum motibus, ortu et occasu signorum, ac stellarum non sit refertum? Adde quod nemo antiquorum poemata intelligit, nisi prius optime in Astronomiae studio fuerit versatus.73

(And what would poets accomplish if they were totally deprived of this glorious science? Which poems written by excellent and outstanding men do not discuss the movements of the stars, the rise, and the setting of constellations and planets? Consider that no one understands antique poetry without being well-versed in the study of astronomy).

To support this idea, the book itself contains several quotations from classical poetry that discuss relevant astronomical knowledge, many of which can be found in the notebooks from Vienna and Olomouc. Certainly, the versified form of these citations can be explained by their role as mnemonic tools.74

Prosody helped in the remembering of simple rules in logic, for instance, the different kinds of syllogisms; in physics, the names of elements and qualities were put into verses, and their use is attested in the sources.75 In astronomy, Clavius's textbook provided several quotations from classics, such as Manilius, Claudianus, Virgil, and others. They also appear in Révay’s and his fellow students’ notes. For instance, to memorize the Zodiacs, they used a section from Manilius’s Astronomica, where the constellations appear in a lively scene.76

The presence of didactical poems as a source of erudition enables us to compare Clavius’s textbook to humanist scholarship on natural philosophy,

73 Clavius, In Sphaeram, 7–8.
74 The mnemonic value of versification was already recognized in the late Middle Ages. The Roseum memoriale, a poem by Peter of Rosenheim (1380–1433), helped the reader memorize the content of the Bible: Sabiene Tiedje, “The Roseum memorial divinorum Eloquiorum Petri de Rosenheim: A Bible Summary from the Fifteenth Century,” in Retelling the Bible: Literary, Historical, and Social Contexts, ed. Lucie Doležalová and Tamás Visi (Frankfurt am Main: Peter Lang, 2011), 335–53; about Rosenheim’s posterity, see Jean Michel Massing, “From Manuscript to Engravings: Late Medieval Mnemonic Bibles,” in Ars memorativa: Zur kulturgeschichtlichen Bedeutung der Gedächtniskunst 1400–1750, ed. Jörg Jochen Berns and Wolfgang Neuber (Tübingen: Niemeyer, 1993), 101–15.
75 ALE, Ms. ii. 227a, fol. 285v; Ms. ii. 227b, fol. 79v; fol. 371v–72v; Ms. ii. 227c, fol. 342r–v; Ms. ii. 227a, fol. 185v; Ms. ii. 227b, “De sphæra,” fol. 1r, etc. Even the diagram about predicaments from the Olomouc manuscript contains mnemonic epigrams about elements and other materials (ALE, Ms. ii. 227a, fol. 185v).
76 Clavius quotes Manilius, Astronomica, 11: 263–74 as a mnemonic aid for the constellations of the Zodiac. Clavius, In Sphaeram, 237; in Révay’s manuscript: ALE, Ms. ii. 272a, “In sphaeram Ioannis de Sacrobosco commentaria,” fol. 24v (In this section about astrology, the numbering of the folios recommences from fol. 1v).
medicine, or zoology, where antique poetry had a similar function. Apparently, Clavius, though always affirming the epistemological supremacy of mathematics, did not intend to emancipate his discipline from the philological duties assigned to a scientist in Renaissance scholarship. In this respect, Clavius’s work is not so much different from the zoology of Conrad Gessner (1516–65) and Ulisse Aldrovandi (1522–1605), whose books linked antique and modern data on animals to classical quotations and Renaissance emblematica, or Jean Bodin’s (c.1530–96) *Universae naturae theatrum*, which was a large encyclopedia of natural history composed by the French jurist in the form of a commonplace book. But contrary to these humanist authors, Clavius refrains from recycling an exclusively bookish culture and, instead, keeps his discipline within a strictly mathematical framework (geometry, measurements, and calculations). Nonetheless, this very contrast between the humanist idea of *copia* and the scholastic structure underscores Clavius’s efforts to make astronomy pleasant to everyone. As much as dialectics became an encyclopedic overview of human activities (theoretical and practical) in the Jesuit classroom, astronomical studies were conceived as an excuse to teach civility, as well as verbal and social skills, to young men.

Scientific Progress and Polemics in the Syllabus

As we have seen, some of our manuscripts reflect a particular interest in the practical use of science, namely in the field of astronomy. Experimental cognition going beyond theory was traditionally present in the education of

this discipline by the Jesuits. Following a medieval heritage, gnomonic, the fabrication of astrolabes and other instruments was taught in the schools of the order. In 1548, Jerónimo Nadal prescribed Johannes Stöffler’s (1452–1531) *Elucidatio fabricae ususque atrolabii* (Oppenheim, 1512) for the College of Messina,79 and the matter remained essential in Clavius’s curriculum as well.80 According to the record of Oliverius Manaraeus’s (1523–1614) visitation from 1583, the students of Graz were taught about astrolabe and astronomical clocks in addition to Euclid’s and Sacrobosco’s works.81 Even before Clavius’s commentary, treatises about Sacrobosco’s *De sphaera*, like the books of the Portuguese Pedro Nuñes (1502–78) or the Spaniard Martin Cortés (1510–82), discussed instruments used in navigation.82

Except for some extreme cases of the like, the goal of this thoroughness was to help future clergymen understand *computus*, the calculation of the dates of religious feasts, especially Easter. Clavius was more deeply involved in the matter than that: he was not only one of the elaborators of the Gregorian Reform, but he was also the main target of Protestant attacks following its introduction. When he started defending the reform against Michael Maestlin (1550–1631), Joseph Justus Scaliger (1540–1609), and François Viète (1540–1603), he had a no less important ally than Antonio Possevino himself.83 As an efficient way to propagate the new calendar, he announced the imminent reform in the 1581 edition of his textbook; the following year, as it is known, the reform was launched.84

It is not surprising that Révay’s and Szelepcsényi’s notebooks contain texts about the use of an astrolabe and quadrant—right after the commentary on *De sphaera*.85 As can be seen from his manuscript, Révay studied the *computus* in detail. Moreover, his annotations contain an interesting section about the recently introduced Gregorian Reform, in which the inaccuracy of the Julian
Calendar, amended by the astronomers of the pope, is exposed in very clear terms.\footnote{Ibid., “In sphaeram ...,” fol. 55v–56v. On the margin of folio 55v, Révay placed the following note: “In annis 1580 sedes suas novilunia anticiparent 5 diebus et aliquid amplius.” (In 1580, the new moon occurred five days and a little bit earlier.)}

This change proved to be a practical issue that probably kept Révay’s mind busy for years. As a Protestant, he was certainly receptive to the debates about the theological implications of the Gregorian initiative. The Lutherans of Strasbourg, where Révay continued his studies, questioned the acceptability of the new calendar from the outset, and in 1583, they published a treatise discussing the new system in the context of Protestant anti-papal criticism.\footnote{Lambert Floridus Plieninger, \textit{Kurtz Bedencken von der Emendation deß Jars, durch Babst Gregorium den XIII. fürgenomen vn von seinem Kalender nach jhm Kalendarium Gregorianum perpetuum intituliert: Ob solcher den Protestierenden Ständen anzůnemen seie oder nicht} (Strasbourg: Josias Rihel, 1583) vD16 P 3479.}

The introduction of the Gregorian Calendar was also the subject of a debate between Protestants and Catholics in both the Kingdom of Hungary and Transylvania. When Emperor Rudolf II (ruled as King of Hungary, 1576–1608) ordered that the Gregorian Calendar be used from October 1583 in every land of his empire, the Catholics in Hungary immediately switched to the new system. In 1588, the Hungarian diet accepted a law enforcing the use of the new calendar. In 1599, the diet, where Révay was present, made a law that imposed a considerable fine for publishers who continued to print the old calendar.\footnote{The disputations have been preserved in the legacy of the Hungarian poet Albert Szenci Molnár, a student of the Strasbourg gymnasium: Mihály Imre, “Úton járásnak megírása”: Kulturális emlékezet, retorikai-poétikai elvek érvényesülése Szenci Molnár Albert műveiben [“Writing our itinerary”: Cultural memory and rhetorical-poetical principles in Albert Szenci Molnár’s works] (Budapest: Balassi Kiadó, 2009), 30.}

As for Révay, he would make mention of the topic in his \textit{De monarchia}. Indeed, he seems to have eventually made peace with the Gregorian Reform, though he espoused an antipapist opinion on the issue: in a passage where he evaluated Rudolf II’s rule, he emphasized that the introduction of the new calendar in Hungary had been carried out not by order of the pope but by the efforts of the emperor.\footnote{On Révay’s participation in the diet of 1599, Bónis, \textit{Révay Péter}, 18; on the debates around the Gregorian Calendar in Hungary, see Balázs Nagy, “A gregorián naptáreform sorsa Magyarországon [The fate of the Gregorian Reform in Hungary],” \textit{Magyar Könyvszemle} 103 (1986): 60–67; Marcell Sebők, \textit{Humanista a határon: A késmárki Sebastian Ambrosius története} (1554-1630) (Budapest: L’Harmattan, 2007), 133–60. Unfortunately, the English translation of the book does not contain this chapter: Marcell Sebők, \textit{A Humanist on the Frontier: The Life Story of a Sixteenth-Century Central European Pastor} (London: Routledge, 2022).}

\footnote{Révay, \textit{De monarchia ...}, 2:272 (6.145.7).}
Astronomy would also play an important role in Péter Pázmány’s physics course. Connecting knowledge of physics to astronomy, especially if based on measurement, computing, and observation, was not as obvious as it might seem today. Astronomy and natural philosophy had different epistemological bases. Astronomy was a component of mathematics, and mathematics was not considered sufficient for providing the same level of certainty as logic and speculative philosophy because it did not proceed via syllogisms. Even Clavius had to make serious efforts to salvage mathematics from its assumed inferior status, and to affirm the affinity between mathematics and natural philosophy.\(^{91}\) Aristotle’s *On Heavens* was, of course, a part of the scholastic curriculum of physics. But unlike Sacrobosco’s textbook, it had little to do with arithmetical or geometrical demonstration and computing. Instead, it proffered highly qualitative speculation about the eternity and perfection of heavenly bodies and their motions.\(^{92}\) But Pázmány, who knew Clavius’s book and cited it several times, discussed astronomy while commenting on Aristotle’s *On Heavens*. At a certain point, the Hungarian Jesuit made assumptions on the size of the celestial spheres, quoting Seneca’s *Natural Questions*, Chrysostom’s homilies on the book of Genesis, and several other antique and modern sources, including even Clavius.\(^{93}\) Perhaps it can be assumed without exaggeration that Pázmány’s method of employing classics and church Fathers to illustrate Aristotle’s text displays an affinity with Clavius’s textbook in terms of encyclopedic ambitions and the use of humanist *copia*.

Not only did this Christian humanist knowledge management, or the mathematical approach, appear in Pázmány’s text, but some references to scientific debates derived from recent developments did also. In literature, it is a well-known fact that Pázmány, teaching only a short distance from the Protestant College of Graz where Johannes Kepler (1571–1630) worked, reflected on the Copernican theory in his lectures. Even if he rejected heliocentrism, he was so intrigued by it that he once even improvised an argument about Nicolaus Copernicus (1473–1543) in the classroom. At some point in a section where the proofs of the spherical shape of the heavens are discussed regarding their validity, the author claims that astronomical instruments

92 Except the end of book 2, where Aristotle risks an estimation on the size of the Earth (2.14, 298a15–20).

93 Pázmány, *Opera*, 3:75.
are not always reliable: “The Coimbra Course and Clavius also state that the instruments of astronomers coincide with the movements of the skies, as if the skies were spherical; and this could not be the case if the skies were not actually spherical.”94 In the first version, he provides several examples where instruments mislead the observer. On the margin, he put a somewhat puzzling and hyperbolic note about Copernicus: “Copernicus's instrument, the quadrant, as if the sun were in the center of the universe, is not valid.”95 While offering his dictations in the classroom, Pázmány often incorporated these marginal notes in the main text, which can be observed in the version made by his student’s hand. According to the notes of Scultetus, Pázmány expanded his initial remark about Copernicus as follows: “But this argument has no validity because even Copernicus’s instruments, which establish the sun as immobile in the center of the universe, corresponds with everything that happens in the sky, as if the sun were really there, but that does not imply that the sun is actually there.”96 Ergo, astronomical instruments are not to be unconditionally trusted. Although mathematical knowledge infiltrates Pázmány’s physics, he eventually came out against the epistemological validity of calculations. Hence, his arguments can be interpreted as a nuanced but rather conservative contribution to the debate around Clavius’s propositions.

Conclusion

Joannes Mollensis and Péter Pázmány opened the peripatetic subject matter to the Gregorian Reform and to the debates around heliocentrism, whereas more abstract matters, such as Aristotelian logic, were discussed with an encyclopedic claim towards all dialectically knowable subjects in all of the analyzed notebook. Although each of the discussed notebooks emerged as a result of either copying or dictation during praelectio (instead of other types of

94 Pázmány, Opera, 3:76, “De coelo,” disp. 2, qu. 2.: “Addunt Clavius et Conimbricenses: instrumenta astronomorum conveniunt cum motibus coelorum non secus ac si essent coeli sphaericici quod tamen fieri non posset si coeli non sint sphaerici.” Pázmány’s discussion about Copernicus, including this argument, is analyzed by Blum, Studies on Early Modern Aristotelism, 60–61, who also describes how Pázmány’s marginal notes were integrated in the main text during the dictation to the student.

95 ulb, F 6, 1, fol. 271r: "Copernici Instrumentum quadrans ac si sol esset in centro u[niversi] non ualet."

exercise), these sources contain sufficient proof that the teachers proceeded through illustrative explanation, providing an insight into the rich terminology of the subject matter, and reflecting on emerging scientific problems that sometimes kept busy the minds of the students; and such inquiry would have extended to their subsequent career.

Based on the relative completeness of the subject matter, the richness of the illustrative materials, and the presence of recent humanistic or scientific accomplishments in the students’ notebooks, this rather optimistic assessment of Jesuit teaching may be questioned regarding the time dedicated to the curriculum. Instead of the usual period of three years, most of these students assimilated philosophy within one year, particularly when the circumstances demanded it. In these three colleges, however, we can observe an operational education in philosophy compared to the earlier areas that the Society had to address.

These documents attest to a functional and—due to the dense network of the order—a surprisingly unified practice in the teaching of philosophy in the schools of the Austrian Province in the 1580s–90s, a period preceding the final issue of the *Ratio studiorum*. Later, the appearance of major textbooks on Aristotelian philosophy would only accelerate this process. Encouraged and overseen by Acquavivia, Possevino, and other leading Jesuits from Rome, significant attempts were made in the Iberian Peninsula to replace dictation with printed textbooks. The work began at the former Royal College of Arts of Coimbra, which became a Jesuit college in 1555. It was here that Pedro da Fonseca wrote his comprehensive works on dialectic (1564) and metaphysics (1577), which, although widely acclaimed, were generally considered to be too difficult to be included in curricula. For other subjects, the University of Coimbra began to publish its famous *Coimbra Course* in 1591. Edited by Fonseca, and later Manuel de Góis (1543–97), Baltasar Álvares (1560–1630), and Sebastião do Couto (1567–1639), the Coimbra commentaries had a rich publication history, including editions printed inside and outside Portugal (Venice, Cologne, Lyon, Hamburg, Frankfurt, and Mainz). In the end, the seven volumes on Aristotle’s natural philosophy were followed by a logic textbook, published to replace Fonseca’s work in 1606. However, the accomplishment of a metaphysics textbook was prevented by the death of Manuel de Góis in 1597, who would have been a more competent person for the task. Instead, the colleges of the order began to make recourse to Francisco Suárez’s (1548–1617) *Disputationes metaphysicae* (1597). By the first half of the seventeenth
century, the *Coimbra Course*, completed with Suárez’s metaphysics, had come to dominate Catholic philosophy teaching.97

As we have seen, at the time of his professorship, Pázmány had access to several *Coimbra* volumes. Indeed, as soon as it became possible, the Jesuit institutions, including even the remotest colleges of the Austrian Province, made serious efforts to purchase the *Coimbra* textbooks. Most of them appear, for instance, in the book inventory conscribed in 1632 at the College of Trnava, which was a few years later elevated to the rank of university thanks to the efforts of Pázmány.98 By 1690, the year when an updated inventory was completed, the university had obtained the previously missing volumes of

The College of Košice, which was re-established as a university in 1660, equally sought to obtain the Coimbra Course for its library. It would be interesting to study how the increasing availability of Jesuit textbooks affected the number of lecture notes surviving from the legacy of Catholic students who were schooled abroad or in their homeland. A preliminary analysis of philosophy notebooks based on the manuscript catalog of the Archdiocesan Library of Esztergom justifies a cautious optimism. The first extant manuscript, a notebook on physics from Vienna, dates from 1561. Before the end of the sixteenth century, 19 items can be listed, whereas from the entire seventeenth century, when the Coimbra Course and Suárez's works were at their acme in terms of their influence, the same collection preserves 36 notebooks covering the entire curriculum for philosophy, or specific sections of it.
A marginal increase, especially if we consider that the 19 notebooks of the sixteenth century were produced over a span of four decades. However, the efforts of the Hungary Catholic reform would bear fruit in the next century, resulting in a growing number of Catholic students. This means that as time went by, the survival rate of their notebooks would have improved. That said, by the second half of the seventeenth century, the number of surviving philosophy notebooks radically decreased: only nine of them were dated after 1650. Does that mean that printed textbooks rendered dictated notebooks superfluous, as, indeed, the leaders of the Society had hoped for from the very beginning? On the other hand, it is hard to imagine that the elaborated Jesuit note-taking practices abruptly disappeared due to the arrival of printed textbooks. In fact, the inventorial data on books purchased by college libraries do not indicate that every student could afford their own copy of the series, which comprised eight volumes. They did not need to do so at all: it is more likely that students continued to copy the necessary sections directly from them, as it had been previously done with the textbooks of the Leuven professors and Clavius. Despite the increasing accessibility of textbooks, the keeping of notebooks remained a factual necessity. And so, scrutinizing them remains thus indispensable for assessing the notion of personal achievement in Jesuit education.

227 b (physics, Olomouc, 1588–89); Ms. ii. 16 (De anima and metaphysics, Rome, 1589); Ms. ii. 227 c (philosophy, Olomouc, 1590); Ms. ii. 227 d (logic, Olomouc, 1590); Ms. ii. 308 (metaphysics, Vienna, 1590); Ms. ii. 318 (logic, Braunsberg [Braniwio], 1592–93). Seventeenth century (36 items): ALE, Ms. ii. 360 (De anima, 1615); Ms. ii. 361 (physics, 1618); Ms. ii. 322 (physics, Vienna, 1622); Ms. ii. 363 (logic, Vienna?, 1622); Ms. ii. 383 (physics and metaphysics, Vienna, 1624); Ms. 333 a (logic, Vienna, 1625); Ms. 333 b (De anima, Vienna, 1625); Ms. ii. 307 (logic, Vienna?, 3615?); Ms. ii. 338 (logic, Vienna, 1626); Ms. ii. 343 (logic, Vienna, 1630); Ms. ii. 375 (physics and metaphysics, Vienna, around 1630); Ms. ii. 386 (metaphysics and ethics, 1631); Ms. ii. 381 (physics and metaphysics, Vienna, 1631–32); Ms. ii. 364 (logic and physics, Vienna, 1632–33); Ms. ii. 240 b (theology, philosophy, and law, 1632?); Ms. ii. 358 (logic, Vienna, 1633–34); Ms. ii. 362 (physics, Vienna, 1635); Ms. ii. 345 (philosophy, Vienna, 1636); Ms. ii. 346 (logic, Vienna, 1637); Ms. ii. 355/1 (logic, Vienna, 1637–38); Ms. ii. 355/2 (physics, arithmetic, Vienna, 1638–39); Ms. ii. 359 (physics, etaphysics, and ethics, Vienna, 1639–40); Ms. ii. 41 (ethics, around 1643); Ms. iii. 142 (De anima, Graz, 1645); Ms. ii. 380 (physics and meteorology, first half of the 17th century); Ms. ii. 384 (physics and meteorology, first half of the seventeenth century); Ms. ii. 58 (logic, Rome?, first half of the seventeenth century); Ms. ii. 365 (meteorology and physics, Vienna, 1661); Ms. ii. 309 (physics, Vienna, 1669); Ms. ii. 366 (physics and metaphysics, Vienna, 1669–70); Ms. ii. 324 (meteorology, Trnava, 1692); Ms. ii. 337 (logic, Vienna, 1692); Ms. ii. 325 (physics, Vienna, 1693); Ms. ii. 306 (philosophy, seventeenth century); Ms. ii. 367 (physics, Vienna, end of the seventeenth century or beginning of the eighteenth century); Ms. ii 281 (physics, Vienna, seventeenth–eighteenth century, but probably around 1719). In the case of three manuscripts, the catalogue did not allow us to determine whether they were written down in the sixteenth or in the seventeenth century, but they can probably be dated to the turn of the seventeenth century: ALE, Ms. ii. 207 (physics); Ms. ii. 221 (philosophy); Ms. ii. 228 (logic, physics, and geometry).