1. African swine fever (ASF), the pig health challenge of the century

In: Understanding and combatting African Swine Fever
C. Martins CIISA – Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal.

Search for other papers by C. Martins in
Current site
Google Scholar
F.S. Boinas CIISA – Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal.

Search for other papers by F.S. Boinas in
Current site
Google Scholar
L. Iacolina Department of Chemistry and Bioscience, Aalborg University, Frederik Bajers Vej 7H, 9220 Aalborg, Denmark.
Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, SI-6000 Koper, Slovenia.

Search for other papers by L. Iacolina in
Current site
Google Scholar
F. Ruiz-Fons Health & Biotechnology (SaBio) Group, Spanish Game and Wildlife Research Institute (IREC; CSIC-UCLM-JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain.

Search for other papers by F. Ruiz-Fons in
Current site
Google Scholar
, and
D. Gavier-Widén Department of Pathology and Wildlife Diseases, National Veterinary Institute (SVA), 751 89, Uppsala, Sweden.
Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), Box 7028, 750 07 Uppsala, Sweden.

Search for other papers by D. Gavier-Widén in
Current site
Google Scholar
Open Access

More than one hundred years ago African swine fever (ASF) was first diagnosed in Kenya. Since then, diverse approaches have been applied to the study of the causative virus, the sole member of the family Asfarviridae, aimed at characterising its properties, genome organisation and replication, its antigenic and biological properties as well as to develop treatment and a vaccine. The disease evolved and has persisted in Africa in a sylvatic cycle involving wild suids and soft ticks for a long time, but was introduced, usually through contaminated waste food, into other regions on multiple occasions since 1957. The most recent introduction, into Georgia in 2007, resulted in the spread of the disease to the European Union in 2014 and to the establishment of an international and multidisciplinary network of scientists funded by the European Cooperation in Science and Technology (COST) two years later. The network included a broad variety of scientific fields, animal health and food safety authorities, hunting associations, wildlife managers and food and livestock industries with the goal of increasing preparedness and attempting to stop ASF spread. This book represents the summary of the collective and integrated work of almost 300 dedicated participants in tackling the complex challenge posed by ASF. Here we summarise the state-of-the-art knowledge on this lethal disease, with a focus on the European situation, and identify areas that still need to be explored.

  • Arias, M., De la Torre, A., Dixon, L., Gallardo, C., Jori, F., Laddomada, A., Martins, C., Parkhouse, R.M., Revilla, Y., Rodriguez, F. and J.-M., Sanchez-Vizcaino and Sanchez-Vizcaino, J.M., 2017. Approaches and perspectives for development of African swine fever virus vaccines. Vaccines 5: 35. https://doi.org/10.3390/vaccines5040035

  • Bastos, A.D.S., Penrith, M.L., Crucière, C., Edrich, J.L., Hutchings, G., Roger, F., Couacy-Hymann, E. and Thomson, G.R., 2003. Genotyping field strains of African swine fever virus by partial p72 gene characterisation. Archives of Virology 148: 693-706. https://doi.org/10.1007/s00705-002-0946-8

  • Blome, S., Gabriel, C. and Beer, M., 2013. Pathogenesis of African swine fever in domestic pigs and European wild boar. Virus Research 173: 122-130. https://doi.org/10.1016/j.virusres.2012.10.026

  • Boinas, F.S., Wilson, A.J., Hutchings, G.H., Martins, C. and Dixon, L.J., 2011. The persistence of African swine fever virus in field-infected Ornithodoros erraticus during the ASF endemic period in Portugal. PLoS ONE 6: e20383. https://doi.org/10.1371/journal.pone.0020383

  • Caiado, J.M., Boinas, F.S. and Louza, A.C., 1988. Epidemiological research of African swine fever (ASF) in Portugal: the role of vectors and virus reservoirs. Acta Veterinaria Scandinavica. Supplementum 84: 136-138.

  • Commission of the European Communities-Directorate General for Agriculture, (CEC-DGCI), 1994. Programme to eradicate African swine fever from Iberian Peninsula. Commission of the European Communities, Brussels, Belgium.

  • Franzoni, G., Razzuoli, E., Dei Giudici, S., Carta, T., Galleri, G., Zinellu, S., Ledda, M., Angioi, P., Modesto, P., Graham, S.P. and Oggiano, A., 2020. Comparison of macrophage responses to African swine fever viruses reveals that the NH/P68 strain is associated with enhanced sensitivity to type I IFN and cytokine responses from classically activated macrophages. Pathogens 9: 209. https://doi.org/10.3390/pathogens9030209

  • Gallardo, M.C., Reoyo, A. de la T., Fernández-Pinero, J., Iglesias, I., Muñoz, M.J. and Arias, M.L., 2015. African swine fever: a global view of the current challenge. Porcine Health Management 1: 21. https://doi.org/10.1186/s40813-015-0013-y

  • Gaudreault, N.N., Madden, D.W., Wilson, W.C., Trujillo, J.D. and Richt, J.A., 2020. African swine fever virus: an emerging DNA arbovirus. Frontiers in Veterinary Science 7: 215. https://doi.org/10.3389/fvets.2020.00215

  • Gil, S., Sepúlveda, N., Albina, E., Leitão, A. and Martins, C., 2008. The low-virulent African swine fever virus (ASFV/NH/P68) induces enhanced expression and production of relevant regulatory cytokines (IFNα, TNFα and IL12p40) on porcine macrophages in comparison to the highly virulent ASFV/L60. Archives of Virology 153: 1845-1854. https://doi.org/10.1007/s00705-008-0196-5

  • Gómez-Villamandos, J.C., Bautista, M.J., Sánchez-Cordón, P.J. and Carrasco, L., 2013. Pathology of African swine fever: the role of monocyte-macrophage. Virus Research 173: 140-149. https://doi.org/10.1016/j.virusres.2013.01.017

  • Guberti, V., Khomenko, S., Masiulis, M. and Kerba, S., 2020. African swine fever in wild boar ecology and biosecurity. OIE and EC, Rome, Italy. https://doi.org/10.4060/ca5987en

  • Laddomada, A., Rolesu, S., Loi, F., Cappai, S., Oggiano, A., Madrau, M.P., Sanna, M.L., Pilo, G., Bandino, E., Brundu, D., Cherchi, S., Masala, S., Marongiu, D., Bitti, G., Desini, P., Floris, V., Mundula, L., Carboni, G., Pittau, M., Feliziani, F., Sanchez-Vizcaino, J.M., Jurado, C., Guberti, V., Chessa, M., Muzzeddu, M., Sardo, D., Borrello, S., Mulas, D., Salis, G., Zinzula, P., Piredda, S., De Martini, A. and Sgarangella, F., 2019. Surveillance and control of African swine fever in free-ranging pigs in Sardinia. Transboundary and Emerging Diseases 66: 1114-1119. https://doi.org/10.1111/tbed.13138

  • Leitão, A., Cartaxeiro, C., Coelho, R., Cruz, B., Parkhouse, R.M.E., Portugal, F.C., Vigário, J.D. and Martins, C.L.V., 2001. The non-haemadsorbing African swine fever virus isolate ASFV/NH/P68 provides a model for defining the protective anti-virus immune response. Journal of General Virology 82: 513-523. https://doi.org/10.1099/0022-1317-82-3-513

  • Malmquist, W.A. and Hay, D., 1960. Hemadsorption and cytopathic effect produced by African Swine Fever virus in swine bone marrow and buffy coat cultures. American Journal of Veterinary Research 21: 104-108.

  • Manso Ribeiro, J. and Rosa Azevedo, J.A., 1961. Réapparition de la Peste Porcine Africaine (P.P.A) au Portugal. Bulletin de l’Office International Des Épizooties 55: 88-106.

  • Manso Ribeiro, J., Rosa Azevedo, J.A., Teixeira, M.J.O., Braço-Forte, M.C., Rodrigues Ribeiro, A.M. Oliveira e Noronha, F. Grave Pereira, C. and Dias Vigário, J., 1958. Peste porcine provoquée par une souche différente (Souche L) de la souche classique. Bulletin de l’Office International Des Épizooties 50: 516-534.

  • Martins, C., Mebus, C., Scholl, T., Lawman, M. and Lunney, J., 1988. Virus‐specific CTL in SLA‐inbred swine recovered from experimental African swine fever virus (ASFV) infection. Annals of the New York Academy of Sciences 532: 462-464. https://doi.org/10.1111/j.1749-6632.1988.tb36376.x

  • Martins, C.L.V, Lawman, M.J.P., Scholl, T., Mebus, C.A. and Lunney, J.K., 1993. African swine fever virus specific porcine cytotoxic T cell activity. Archives of Virology 129: 211-225. https://doi.org/10.1007/BF01316896

  • Martins, C.L.V, Scholl, T., Mebus, C.A., Fisch, H. and Lawman, M.J.P., 1987. Modulation of porcine peripheral blood-derived macrophage functions by in vitro infection with African swine fever virus (ASFV) isolates of different virulence. Viral Immunology 1: 177-190. https://doi.org/10.1089/vim.1987.1.177

  • Mellor, P.S., Kitching, R.P. and Wilkinson, P.J., 1987. Mechanical transmission of capripox virus and African swine fever virus by Stomoxys calcitrans. Research in Veterinary Science 43: 109-112. https://doi.org/10.1016/s0034-5288(18)30753-7

  • Michaud, V., Randriamparany, T. and Albina, E., 2013. Comprehensive phylogenetic reconstructions of African swine fever virus: proposal for a new classification and molecular dating of the virus. PLoS ONE 8: e69662. https://doi.org/10.1371/journal.pone.0069662

  • Montgomery, R.E., 1921. On a form of swine fever occurring in British East Africa (Kenya colony). Journal of Comparative Pathology and Therapeutics 34: 159-191 (part I), 243-269 (part II).

  • Olesen, A.S., Lohse, L., Hansen, M.F., Boklund, A., Halasa, T., Belsham, G.J., Rasmussen, T.B., Bøtner, A. and Bødker, R., 2018. Infection of pigs with African swine fever virus via ingestion of stable flies (Stomoxys calcitrans). Transboundary and Emerging Diseases 65: 1152-1157. https://doi.org/10.1111/tbed.12918

  • Onisk, D.V, Borca, M.V, Kutish, S., Kramer, E., Irusta, P. and Rock, D.L., 1994. Passively transferred African swine fever virus antibodies protect swine against lethal infection. Virology 198|: 350-354. https://doi.org/10.1006/viro.1994.1040

  • Ordas, A., Sanchez-Botija, C., Bruyel, V. and Olias, J., 1983. African swine fever. The current situation in Spain. In: Wilkinson, P.J. (ed.), African Swine Fever. CEC, Luxemburg, Luxemburg, pp. 67-73.

  • Oura, C.A.L., Denyer, M.S., Takamatsu, H. and Parkhouse, R.M.E., 2005. In vivo depletion of CD8+ T lymphocytes abrogates protective immunity to African swine fever virus. Journal of General Virology 86: 2445-2450. https://doi.org/10.1099/vir.0.81038-0

  • Pan, I.C. and Hess, W.R., 1984. Virulence in African swine fever: its measurement and implications. American Journal of Veterinary Research 45: 361-366.

  • Pan, I.C. and Hess, W.R., 1985. Diversity of African swine fever virus. American Journal of Veterinary Research 46: 314-320.

  • Penrith, M.L., Thomson, G.R., Bastos, A.D.S., Etter, E.M., Coetzer, J.A.W. and Tustin, R.C., 2004. African swine fever. In: Coetzer, J.A.W. and Tust (eds.), Infectious diseases of livestock. Oxford University Press, Cape Town, South Africa, pp. 1088-1119.

  • Perestrelo-Vieira, R., 1993. Evolution of African swine fever in Portugal. In: Galo, A. (ed.), African swine fever. Coordination of Agricultural Research. Proceedings of a Research Seminar in Lisbon, 1991. Commission of the European Communities, Luxemburg, Luxembourg, pp. 67-73.

  • Pini, A. and Wagenaar, G., 1974. Isolation of a non-haemadsorbing strain of African swine fever (ASF) virus from a natural outbreak of the disease. Veterinary Record 94: 2. https://doi.org/10.1136/vr.94.1.2

  • Plowright, W., Parker, J. and Peirce, M.A., 1969. African swine fever virus in ticks (Ornithodoros moubata, Murray) collected from animal burrows in Tanzania., Nature. https://doi.org/10.1038/2211071a0

  • Plowright, W., Thomson, G.R. and Neser, J.A., 1994. African swine fever. In: Coetzer, J.A.W., Thomson, G.R. and Tustin, R.C. (eds.), Infectious diseases of livestock with special reference to Southern Africa. Oxford University Press, Cape Town, South Africa, pp. 567-599.

  • Polo Jover, F. and Sanchez-Botija, C., 1961. La peste porcine Africaine en Espagne. Bulletin de l’Office International Des Épizooties 55: 148-175.

  • Portugal, R., Coelho, J., Höper, D., Little, N.S., Smithson, C., Upton, C., Martins, C., Leitão, A. and Keil, G.M., 2015. Related strains of African swine fever virus with different virulence: Genome comparison and analysis. Journal of General Virology 96: 408-419. https://doi.org/10.1099/vir.0.070508-0

  • Portugal, R., Leitão, A. and Martins, C., 2018. Modulation of type I interferon signaling by African swine fever virus (ASFV) of different virulence L60 and NHV in macrophage host cells. Veterinary Microbiology 216: 132-141. https://doi.org/10.1016/j.vetmic.2018.02.008

  • Reis, A.L., Abrams, C.C., Goatley, L.C., Netherton, C., Chapman, D.G., Sanchez-Cordon, P. and Dixon, L.K., 2016. Deletion of African swine fever virus interferon inhibitors from the genome of a virulent isolate reduces virulence in domestic pigs and induces a protective response. Vaccine 34: 4698-4705. https://doi.org/10.1016/j.vaccine.2016.08.011

  • Sanchez-Botija, C., 1963. Reservorios del virus de la P.P.A-Investigacion del virus de la P.P.A en los artropodos mediante la prueba de la hemoadsorcion. Bulletin de l’Office International Des Épizooties 60, 895-899.

  • Takamatsu, H., Martins, C., Escribano, J.M., Alonso, C., Dixon, L.K., Salas, M.L. and Revilla, Y., 2011. Family Asfarviridae. In: King, A.M.Q., Adams, M.J., Carstens, E.B. and Lefkowitz, E.J.B.T.-V.T. (eds.), Virus taxonomy. Elsevier, San Diego, CA, USA, pp. 153-162. https://doi.org/10.1016/B978-0-12-384684-6.00012-4

  • Takamatsu, H.H., Denyer, M.S., Lacasta, A., Stirling, C.M.A., Argilaguet, J.M., Netherton, C.L., Oura, C.A.L., Martins, C. and Rodríguez, F., 2013. Cellular immunity in ASFV responses. Virus Research 173: 110-121. https://doi.org/10.1016/j.virusres.2012.11.009

  • Thomson, G.R., Gainaru, M.D. and Van Dellen, A.F., 1979. African swine fever: pathogenicity and immunogenicity of two non-haemadsorbing viruses. Onderstepoort Journal of Veterinary Research 46: 149-154.

  • Van Furth, R. and Cohn, Z.A., 1968. The origin and kinetics of mononuclear phagocytes. Journal of Experimental Medicine 128: 415-435. https://doi.org/10.1084/jem.128.3.415

  • Vigário, J.D., Terrinha, A.M. and Nunes, J.F.M., 1974. Antigenic relationships among strains of African swine fever virus. Archiv für die Gesamte Virusforschung 45: 272-277. https://doi.org/10.1007/BF01249690

  • Wardley, R.C., Norley, S.G., Wilkinson, P.J. and Williams, S., 1985. The role of antibody in protection against African swine fever virus. Veterinary Immunology and Immunopathology 9: 201-212. https://doi.org/10.1016/0165-2427(85)90071-6

  • Wilson, A.J., Ribeiro, R. and Boinas, F., 2013. Use of a Bayesian network model to identify factors associated with the presence of the tick Ornithodoros erraticus on pig farms in southern Portugal. Preventive Veterinary Medicine 110: 45-53. https://doi.org/10.1016/j.prevetmed.2013.02.006

  • Yáñez, R.J., Rodríguez, J.M., Nogal, M.L., Yuste, L., Enríquez, C., Rodriguez, J.F. and Viñuela, E., 1995. Analysis of the complete nucleotide sequence of African swine fever virus. Virology 208: 249-278. https://doi.org/10.1006/viro.1995.1149

  • Collapse
  • Expand