Alcaraz, C., Brun, A., Ruiz-Gonzalvo, F. and Escribano, J.M., 1992. Cell culture propagation modifies the African swine fever virus replication phenotype in macrophages and generates viral subpopulations differing in protein p54. Virus Research 23: 173-182. https://doi.org/10.1016/0168-1702(92)90076-L
Alejo, A., Andrés, G. and Salas, M.L., 2003. African swine fever virus proteinase is essential for core maturation and infectivity. Journal of Virology 77: 5571-5577. https://doi.org/10.1128/jvi.77.10.5571-5577.2003
Alejo, A., Matamoros, T., Guerra, M. and Andrés, G., 2018. A proteomic atlas of the African swine fever virus particle. Journal of Virology 92: e01293-18. https://doi.org/10.1128/JVI.01293-18
Alfonso, P., Rivera, J., Hernaez, B., Alonso, C. and Escribano, J.M., 2004. Identification of cellular proteins modified in response to African swine fever virus infection by proteomics. Proteomics 4: 2037-2046. https://doi.org/10.1002/pmic.200300742
Alonso, C., Borca, M., Dixon, L., Revilla, Y., Rodriguez, F. and Escribano, J.M., 2018. ICTV virus taxonomy profile: Asfarviridae. Journal of General Virology 99: 613-614. https://doi.org/10.1099/jgv.0.001049
Alonso, C., Miskin, J., Hernaez, B., Fernandez-Zapatero, P., Soto, L., Canto, C., Rodriguez-Crespo, I., Dixon, L. and Escribano, J.M., 2001. African swine fever virus protein p54 interacts with the microtubular motor complex through direct binding to light-chain dynein. Journal of Virology 75: 9819-9827. https://doi.org/10.1128/JVI.75.20.9819-9827.2001
Andrés, G., Alejo, A., Salas, J. and Salas, M.L., 2002a. African swine fever virus polyproteins pp220 and pp62 assemble into the core shell. Journal of Virology 76: 12473-12482. https://doi.org/10.1128/jvi.76.24.12473-12482.2002
Andrés, G., Charro, D., Matamoros, T., Dillard, R.S. and Abrescia, N.G.A., 2020. The cryo-EM structure of African swine fever virus unravels a unique architecture comprising two icosahedral protein capsids and two lipoprotein membranes. Journal of Biological Chemistry 295: 1-12. https://doi.org/10.1074/jbc.AC119.011196
Andrés, G., García-Escudero, R., Salas, M.L. and Rodríguez, J.M., 2002b. Repression of African swine fever virus polyprotein pp220-encoding gene leads to the assembly of icosahedral core-less particles. Journal of Virology 76: 2654-2666. https://doi.org/10.1128/jvi.76.6.2654-2666.2002
Andrés, G., Garcia-Escudero, R., Vinuela, E., Salas, M.L. and Rodriguez, J.M., 2001. African swine fever virus structural protein pE120R is essential for virus transport from assembly sites to plasma membrane but not for infectivity. Journal of Virology 75: 6758-6768. https://doi.org/10.1128/JVI.75.15.6758-6768.2001
Andrés, G., Simón-Mateo, C. and Viñuela, E., 1997. Assembly of African swine fever virus: role of polyprotein pp220. Journal of Virology 71: 2331-2341. https://doi.org/10.1128/JVI.71.3.2331-2341.1997
Arabyan, E., Hakobyan, A., Kotsinyan, A., Karalyan, Z., Arakelov, V., Arakelov, G., Nazaryan, N., Simonyan, A., Aroutiouniane, R., Ferreira, F. and Zakaryan, H., 2018. Genistein inhibits African swine fever virus replication in vitro by disrupting viral DNA synthesis. Antiviral Research 156: 128-137. https://doi.org/10.1016/j.antiviral.2018.06.014
Bastos, A.D.S., Penrith, M.-L., Cruciére, C., Edrich, J.L., Hutching, G., Roger, F., Couacy-Hymann, E. and Thomson, G.R., 2003. Genotyping field strains of African swine fever virus by partial p72 gene characterization. Archives of Virology 148: 693-706. https://doi.org/10.1007/s00705-002-0946-8
Broyles, S.S., 2003. Vaccinia virus transcription. Journal of General Virology 84: 2293-2303. https://doi.org/10.1099/vir.0.18942-0
Cackett, G., Matelska, D., Sýkora, M., Portugal, R., Malecki, M., Bähler, J., Dixon, L. and Werner, F., 2020. The African swine fever virus transcriptome. Journal of Virology 94: e00119-20. https://doi.org/10.1128/JVI.00119-20
Coelho, J., Ferreira, F., Martins, C. and Leitão, A., 2016. Functional characterization and inhibition of the type II DNA topoisomerase coded by African swine fever virus. Virology 493: 209-216. https://doi.org/10.1016/j.virol.2016.03.023
Coelho, J., Martins, C., Ferreira, F. and Leitão, A., 2015. African swine fever virus ORF P1192R codes for a functional type II DNA topoisomerase. Virology 474: 82-93. https://doi.org/10.1016/j.virol.2014.10.034
Cuesta-Geijo, M.A., Barrado-Gil, L., Galindo, I., Munoz-Moreno, R. and Alonso, C., 2017. Redistribution of endosomal membranes to the African swine fever virus replication site. Viruses 9: 133. https://doi.org/10.3390/v9060133
Cuesta-Geijo, M.A., Chiappi, M., Galindo, I., Barrado-Gil, L., Munoz-Moreno, R., Carrascosa, J.L. and Alonso, C., 2016. Cholesterol flux is required for endosomal progression of African swine fever virions during the initial establishment of infection. Journal of Virology 90: 1534-1543. https://doi.org/10.1128/JVI.02694-15
Cuesta-Geijo, M.A., Galindo, I., Hernaez, B., Quetglas, J.I., Dalmau-Mena, I. and Alonso, C., 2012. Endosomal maturation, Rab7 GTPase and phosphoinositides in African swine fever virus entry. PLoS One 7: e48853. https://doi.org/10.1371/journal.pone.0048853
Dhungel, P., Cao, S. and Yang, Z., 2017. The 5’-poly(A) leader of poxvirus mRNA confers a translational advantage that can be achieved in cells with impaired cap-dependent translation. PLoS Pathogens 13: e1006602. https://doi.org/10.1371/journal.ppat.1006602
Dixon, L.K., Chapman, D.A.G., Netherton, C.L. and Upton, C., 2013. African swine fever virus replication and genomics. Virus Research 173: 3-14. https://doi.org/10.1016/j.virusres.2012.10.020
Dixon, L.K., Islam, M., Nash, R. and Reis, A.L., 2019. African swine fever virus evasion of host defences. Virus Research 266: 25-33. https://doi.org/10.1016/j.virusres.2019.04.002
Esteves, A., Marques, M.I. and Costa, J.V., 1986. Two-dimensional analysis of African swine fever virus proteins and proteins induced in infected cells. Virology 152: 192-206. https://doi.org/10.1016/0042-6822(86)90384-3
Fan, W., Jiao, P., Zhang, H., Chen, T., Zhou, X., Qi, Y., Sun, L., Shang, Y., Zhu, H., Hu, R., Liu, W. and Li, J., 2020. Inhibition of African swine fever virus replication by porcine type I and type ii interferons. Frontiers in Microbiology 11: 1203. https://doi.org/10.3389/fmicb.2020.01203
Forth, J.H., Forth, L.F., Blome, S., Höper, D. and Beer, M., 2020a. African swine fever whole-genome sequencing – Quantity wanted but quality needed. PLoS Pathogens 16: e1008779. https://doi.org/10.1371/journal.ppat.1008779
Forth, J.H., Forth, L.F., King, J., Groza, O., Hübner, A., Olesen, A.S., Höper, D., Dixon, L.K., Netherton, C.L., Rasmussen, T.B., Blome, S., Pohlmann, A. and Beer, M., 2019. A deep-sequencing workflow for the fast and efficient generation of high-quality African swine fever virus whole-genome sequences. Viruses 11: 846. https://doi.org/10.3390/v11090846
Forth, J.H., Forth, L.F., Lycett, S., Bell-Sakyi, L., Keil, G., M., Blome, S., Calvignac-Spencer, S., Wissgott, A., Krause, J., Höper, D., Kampen, H. and Beer, M., 2020b. Identification of African swine fever virus-like elements in the soft tick genome provides insights into the virus’ evolution. BMC Biology 18: 136. https://doi.org/10.1186/s12915-020-00865-6
Freitas, F.B., Frouco, G., Martins, C. and Ferreira, F., 2019. The QP509L and Q706L superfamily II RNA helicases of African swine fever virus are required for viral replication, having non-redundant activities. Emerging Microbes and Infections 8: 291-302. https://doi.org/10.1080/22221751.2019.1578624
Freitas, F.B., Frouco, G., Martins, C., Leitão, A. and Ferreira, F., 2016. In vitro inhibition of African swine fever virus-topoisomerase II disrupts viral replication. Antiviral Research 134: 34-41. https://doi.org/10.1016/j.antiviral.2016.08.021
Fu, D., Zhao, D., Zhang, W., Zhang, G., Li, M., Zhang, Z., Wang, Y., Sun, D., Jiao, P., Chen, C., Guo, Y. and Rao, Z., 2020. Structure of African swine fever virus p15 reveals its dual role for membrane-association and DNA binding. Protein Cell 11: 606-612. https://doi.org/10.1007/s13238-020-00731-9
Galindo, I. and Alonso, C. 2017. African swine fever virus: A review. Viruses 9: 103. https://doi.org/10.3390/v9050103
Galindo, I., Cuesta-Geijo, M.A., Del Puerto, A., Soriano, E. and Alonso, C., 2019. Lipid exchange factors at membrane contact sites in African swine fever virus infection. Viruses 11: 199. https://doi.org/10.3390/v11030199
Galindo, I., Cuesta-Geijo, M.A., Hlavova, K., Munoz-Moreno, R., Barrado-Gil, L., Dominguez, J. and Alonso, C., 2015. African swine fever virus infects macrophages, the natural host cells, via clathrin- and cholesterol-dependent endocytosis. Virus Research 200: 45-55. https://doi.org/10.1016/j.virusres.2015.01.022
Gallardo, C., Nurmoja, I., Soler, A., Delicado, V., Simón, A., Martin, E., Perez, C., Nieto, R. and Arias, M., 2018. Evolution in Europe of African swine fever genotype II viruses from highly to moderately virulent. Veterinary Microbiology 219: 70-79. https://doi.org/10.1016/j.vetmic.2018.04.001
Gallardo, C., Soler, A., Rodze, I., Nieto, R., Cano-Gómez, C., Fernandez-Pinero, J. and Arias M., 2019. Attenuated and non-haemadsorbing (non-HAD) genotype II African swine fever virus (ASFV) isolated in Europe, Latvia 2017. Transboundary Emerging Diseases 66: 1399-1404. https://doi.org/10.1111/tbed.13132
García-Belmonte, R., Perez-Nunez, D., Pittau, M., Richt, J.A. and Revilla, Y., 2019. African swine fever virus armenia/07 virulent strain controls interferon beta production through the cGAS-STING pathway. Journal of Virology 93: e02298-18. https://doi.org/10.1128/JVI.02298-18.
Gil-Fernández, C. and De Clercq, E., 1987. Comparative efficacy of broad-spectrum antiviral agents as inhibitors of African swine fever virus replication in vitro. Antiviral Research 7: 151-160. https://doi.org/10.1016/0166-3542(87)90003-9
Granja, A.G., Perkins, N.D. and Revilla, Y., 2008. A238L inhibits NF-ATc2, NF-kappa B, and c-Jun activation through a novel mechanism involving protein kinase C-theta-mediated up-regulation of the amino-terminal transactivation domain of p300. Journal of Immunology 180: 2429-2442. https://doi.org/10.4049/jimmunol.180.4.2429
Hakobyan, A., Arabyan, E., Kotsinyan, A., Karalyan, Z., Sahakyan, H., Arakelov, V., Nazaryan, K., Ferreira, F. and Zakaryan, H. 2019. Inhibition of African swine fever virus infection by genkwanin. Antiviral Research 167: 78-82. https://doi.org/10.1016/j.antiviral.2019.04.008
Hakobyan, A., Galindo, I., Nañez, A., Arabyan, E., Karalyan, Z., Chistov, A.A., Streshnev, P.P., Korshun, V.A., Alonso, C. and Zakaryan, H., 2018. Rigid amphipathic fusion inhibitors demonstrate antiviral activity against African swine fever virus. Journal of General Virology 99: 148-156. https://doi.org/10.1099/jgv.0.000991
Hernáez, B. and Alonso, C., 2010. Dynamin- and clathrin-dependent endocytosis in African swine fever virus entry. Journal of Virology 84: 2100-2109. https://doi.org/10.1128/JVI.01557-09
Hernáez, B., Guerra, M., Salas, M.L. and Andrés, G., 2016. African swine fever virus undergoes outer envelope disruption, capsid disassembly and inner envelope fusion before core release from multivesicular endosomes. PLoS Pathogens 12: e1005595. https://doi.org/10.1371/journal.ppat.1005595
Hernáez, B., Tarragó, T., Giralt, E., Escribano, J.M. and, Alonso, C. 2010. Small peptide inhibitors disrupt a high-affinity interaction between cytoplasmic dynein and a viral cargo protein. Journal of Virology 84: 10792-10801. https://doi.org/10.1128/JVI.01168-10
Herrera-Uribe, J., Jimenez-Marin, A., Lacasta, A., Monteagudo, P.L., Pina-Pedrero, S., Rodriguez, F., Moreno, A. and Garrido, J.J., 2018. Comparative proteomic analysis reveals different responses in porcine lymph nodes to virulent and attenuated homologous African swine fever virus strains. Veterinary Research 49: 90. https://doi.org/10.1186/s13567-018-0585-z
ICTV Master Species List 2019.v1 Available at: https://talk.ictvonline.org/files/master-species-lists/m/msl/9601
Karger, A., Perez-Nunez, D., Urquiza, J., Hinojar, P., Alonso, C., Freitas, F.B., Revilla, Y., Le Potier, M.F. and Montoya, M., 2019. An update on African swine fever virology. Viruses 11: 864. https://doi.org/10.3390/v11090864
Kessler, C., Forth, J.H., Keil, G.M., Mettenleiter, T.C., Blome, S. and Karger, A., 2018. The intracellular proteome of African swine fever virus. Scientific Reports 8: 14714. https://doi.org/10.1038/s41598-018-32985-z
Li, G., Fu, D., Zhang, G., Zhao, D., Li, M., Geng, X., Sun, D., Wang, Y., Chen, C., Jiao, P., Cao., l., Guo, Y. and Rao, Z., 2020. Crystal structure of the African swine fever virus structural protein p35 reveals its role for core shell assembly. Protein Cell 11: 600-605. https://doi.org/10.1007/s13238-020-00730-w
Liu, R., Sun, Y., Chai, Y., Li, S., Li, S., Wang, L., Su, J., Yu, S., Yan, J., Gao, F., Zhang, G., Qiu, H.-J., Gao, G.F., Qi, J. and Wang, H., 2020. The structural basis of African swine fever virus pA104R binding to DNA and its inhibition by stilbene derivatives. Proceedings of the National Academy of Sciences of the USA 117: 11000-11009. https://doi.org/10.1073/pnas.1922523117
Liu, S., Luo, Y., Wang, Y., Li, S., Zhao, Z., Bi, Y., Sun, J., Peng, R., Song, H., Zhu, D., Sun, Y., Li, S., Zhang, L., Wang, W., Sun, Y., Qi, J., Yan, J., Shi, Y., Zhang, X., Wang, P., Qiu, H.-J. and Gao, G.F., 2019. Cryo-EM structure of the African swine fever virus. Cell Host Microbe 26: 836-843.e3. https://doi.org/10.1016/j.chom.2019.11.004
Malogolovkin, A., Sereda, A. and Kolbasov, D., 2020. African swine fever virus. In: Malik, Y.S., Singh, R.K. and Yadav, M.P. (eds.), Emerging and transboundary animal viruses. Springer, Singapore, pp. 27-53. https://doi.org/10.1007/978-981-15-0402-0_2
Malogolovkin, A., Yelsukova, A., Gallardo, C., Tsybanov, S. and Kolbasov, D., 2012. Molecular characterization of African swine fever virus isolates originating from outbreaks in the Russian Federation between 2007 and 2011. Veterinary Microbiology 158: 415-419. https://doi.org/10.1016/j.vetmic.2012.03.002
Matamoros, T., Alejo, A., Rodríguez, J.M., Hernáez, B., Guerra, M., Fraile-Ramos, A. and Andrés, G., 2020. African swine fever virus protein pE199L mediates virus entry by enabling membrane fusion and core penetration. mBio 11: e00789-20. https://doi.org/10.1128/mBio.00789-20
Matsuyama, T.; Takano, T.; Nishiki, I.; Fujiwara, A.; Kiryu, I.; Inada, M.; Sakai, T.; Terashima, S.; Matsuura, Y.; Isowa, K. and Nakayasu, C. 2020. A novel Asfarvirus-like virus identified as a potential cause of mass mortality of abalone. Scientific Reports 10: 4620, https://doi.org/10.1038/s41598-020-61492-3
Mirzakhanyan, Y. and Gershon, P.D., 2017. Multisubunit DNA-dependent RNA polymerases from Vaccinia virus and other nucleocytoplasmic large-DNA viruses: impressions from the age of structure. Microbiology and Molecular Biology Reviews 81: e00010-17. https://doi.org/10.1128/MMBR.00010-17
Mottola, C., Freitas, F.B., Simões, M., Martins, C., Leitão, A. and Ferreira, F., 2013. In vitro antiviral activity of fluoroquinolones against African swine fever virus. Veterinary Microbiology 165: 86-94. https://doi.org/10.1016/j.vetmic.2013.01.018
Mujibi, F.D., Okoth, E., Cheruiyot, E.K., Onzere, C., Bishop, R.P., Fèvre, E.M., Thomas, L., Masembe, C., Plastow, G. and Rothschild, M., 2018. Genetic diversity, breed composition and admixture of Kenyan domestic pigs. PLoS One 22: e0190080. https://doi.org/10.1371/journal.pone.0190080
Munoz-Moreno, R., Cuesta-Geijo, M.A., Martinez-Romero, C., Barrado-Gil, L., Galindo, I., Garcia-Sastre, A. and Alonso, C., 2016. Antiviral role of IFITM proteins in African swine fever virus infection. PLoS One 11: e0154366. https://doi.org/10.1371/journal.pone.0154366
Netherton, C.L., Simpson, J., Haller, O., Wileman, T.E., Takamatsu, H.-H., Monaghan, P. and Taylor, G., 2009. Inhibition of a large double-stranded DNA virus by MxA protein. Journal of Virology 83: 2310-2320. https://doi.org/10.1128/JVI.00781-08
Netherton, C.L.; Connell, S.; Benfield, C.T.O. and Dixon, L.K., 2019. The genetics of life and death: virus-host interactions underpinning resistance to African swine fever, a viral hemorrhagic disease. Frontiers in Genetics 10: 402. https://doi.org/10.3389/fgene.2019.00402
Nielsen, S., Yuzenkova, Y. and Zenkin, N., 2013. Mechanism of eukaryotic RNA polymerase III transcription termination. Science 340: 1577-1580. https://doi.org/10.1126/science.1237934
Nurmoja, I., Petrov, A., Breidenstein, C., Zani, L., Forth, J.H., Beer, M., Kristian, M., Viltrop, A. and Blome, S., 2017. Biological characterization of African swine fever virus genotype II strains from north-eastern Estonia in European wild boar. Transboundary Emerging Diseases 64: 2034-2041. https://doi.org/10.1111/tbed.12614
Olasz, F. Tombácz, D., Torma, G., Csabai, Z., Moldován, N., Dörmő, Á., Prazsák, I., Mészáros, I., Magyar, T., Tamás, V., Zádori, Z. and Boldogkői, Z., 2020. Short and long-read sequencing survey of the dynamic transcriptomes of African swine fever virus and its host. Frontiers in Genetics 11: 758. https://doi.org/10.3389/fgene.2020.00758
Oleaga, A., Obolo-Mvoulouga, P., Manzano-Roman, R. and Perez-Sanchez, R., 2017. A proteomic insight into the midgut proteome of Ornithodoros moubata females reveals novel information on blood digestion in Argasid ticks. Parasites and Vectors 10: 366. https://doi.org/10.1186/s13071-017-2300-8
Penrith, M.-L., Thomson, G.R., Bastos, A.D.S. and Etter, E.M. 2019. African swine fever. In: J.A.W. Coetzer, G.R. Thomson, N. Maclachlan and M.-L. Penrith (eds.) Infectious disease of livestock (3rd ed.). Anipedia. https://www.anipedia.org
Perez-Nunez, D., Garcia-Urdiales, E., Martinez-Bonet, M., Nogal, M.L., Barroso, S., Revilla, Y. and Madrid, R., 2015. CD2v Interacts with adaptor protein AP-1 during African swine fever infection. PLoS One 10: e0123714. https://doi.org/10.1371/journal.pone.0123714
Petrov, A., Forth, J.H., Zani, L., Beer, M. and Blome, S., 2018. No evidence for long-term carrier status of pigs after African swine fever virus infection. Transboundary Emerging Diseases 65: 1318-1328. https://doi.org/10.1111/tbed.12881
Portugal, R., Leitao, A. and Martins, C., 2018. Modulation of type I interferon signaling by African swine fever virus (ASFV) of different virulence L60 and NHV in macrophage host cells. Veterinary Microbiology 216: 132-141. https://doi.org/10.1016/j.vetmic.2018.02.008
Post, J., Weesendorp, E., Montoya, M. and Loeffen, W.L., 2017. Influence of age and dose of African swine fever virus infections on clinical outcome and blood parameters in pigs. Viral Immunology 30: 58-69. https://doi.org/10.1089/vim.2016.0121
Rodriguez, F., Alcaraz, C., Eiras, A., Yanez, R.J., Rodriguez, J.M., Alonso, C., Rodriguez, J.F. and Escribano, J.M., 1994. Characterization and molecular basis of heterogeneity of the African swine fever virus envelope protein p54. Journal of Virology 68: 7244-7252. https://doi.org/10.1128/JVI.68.11.7244-7252.1994
Rodríguez, J.M. and Salas, M.L., 2013. African swine fever virus transcription. Virus Research 173: 15-28. https://doi.org/10.1016/j.virusres.2012.09.014
Rodriguez, J.M., Salas, M.L. and Santaren, J.F., 2001. African swine fever virus-induced polypeptides in porcine alveolar macrophages and in Vero cells: two-dimensional gel analysis. Proteomics 1: 1447-1456. https://doi.org/10.1002/1615-9861(200111)1:11<1447::aid-prot1447>3.0.co;2-y
Rowlands, R.J., Michaud, V., Heath, L., Hutchings, G., Oura, C., Vosloo, W., Dwarka, R., Onashvili, T., Albina, E. and Dixon, L.K., 2008. African swine fever virus isolate, Georgia, 2007. Emerging Infectious Diseases 14: 1870-1874. https://doi.org/10.3201/eid1412.080591
Salas, M.L. and Andrés, G., 2013. African swine fever virus morphogenesis. Virus Research 173: 29-41. https://doi.org/10.1016/j.virusres.2012.09.016
Salguero, F.J., 2020. Comparative pathology and pathogenesis of African swine fever infection in swine. Frontiers in Veterinary Science 7: 282. https://doi.org/10.3389/fvets.2020.00282
Sanchez Botija, A.C., Ordas, A., Ruiz Gonzalvo, F. and Solana, A., 1977. Procedures in use for diagnosis of ASF. Commission of the European Communities 5904EN
Sanchez, E.G. Quintas, A., Perez-Nunez, D., Nogal, M., Barroso, S., Carrascosa, A.L. and Revilla, Y., 2012. African swine fever virus uses macropinocytosis to enter host cells. PLoS Pathogens 8: e1002754. https://doi.org/10.1371/journal.ppat.1002754
Simões, M., Martins, C. and Ferreira, F., 2015. Early intranuclear replication of African swine fever virus genome modifies the landscape of the host cell nucleus. Virus Research 210: 1-7. https://doi.org/10.1016/j.virusres.2015.07.006
Stefanovic, S., Windsor, M., Nagata, K.I., Inagaki, M. and Wileman, T., 2005. Vimentin rearrangement during African swine fever virus infection involves retrograde transport along microtubules and phosphorylation of vimentin by calcium calmodulin kinase II. Journal of Virology 79: 11766-11775. https://doi.org/10.1128/JVI.79.18.11766-11775.2005
Suárez, C., Gutiérrez-Berzal, J., Andrés, G., Salas, M.L. and Rodríguez, J.M., 2010. African swine fever virus protein p17 is essential for the progression of viral membrane precursors toward icosahedral intermediates. Journal of Virology 84: 7484-7499. https://doi.org/10.1128/JVI.00600-10
Takeuchi, O. and Akira, S., 2010. Pattern recognition receptors and inflammation. Cell 140: 805-820. https://doi.org/10.1016/j.cell.2010.01.022
Tanaka, K., 1988. Protein and polymer analyses up to m/z 100,000 by laser ionization time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry 2: 151-153. https://doi.org/10.1002/rcm.1290020802
Urzainqui, A., Tabares, E. and Carrasco, L., 1987. Proteins synthesized in African swine fever virus-infected cells analyzed by two-dimensional gel electrophoresis. Virology 160: 286-291. https://doi.org/10.1016/0042-6822(87)90076-6
Villalón, M.D., Gil-Fernández, C. and De Clercq, E., 1993. Activity of several S-adenosylhomocysteine hydrolase inhibitors against African swine fever virus replication in Vero cells. Antiviral Research 20: 131-144. https://doi.org/10.1016/0166-3542(93)90003-2
Wang, N., Zhao, D., Wang, J., Zhang, Y., Wang, M., Gao, Y., Li, F., Wang, J., Bu, Z., Rao, Z. and Wang, X., 2019. Architecture of African swine fever virus and implications for viral assembly. Science 366: 640-644. https://doi.org/10.1126/science.aaz1439
Wang, T., Sun, Y. and Qiu, H.J., 2018. African swine fever: an unprecedented disaster and challenge to China. Infectious Diseases of Poverty 7: 111. https://doi.org/10.1186/s40249-018-0495-3
Werner, F. and Grohmann, D., 2011. Evolution of multisubunit RNA polymerases in the three domains of life. Nature Reviews Microbiology 9: 85-98. https://doi.org/10.1038/nrmicro2507
Wilkins, M.R., Pasquali, C., Appel, R.D., Ou, K., Golaz, O., Sanchez, J.C., Yan, J.X., Gooley, A.A., Hughes, G., Humphery-Smith, I., Williams, K.L. and Hochstrasser, D.F., 1996a. From proteins to proteomes: large scale protein identification by two-dimensional electrophoresis and amino acid analysis. Nature Biotechnology 14: 61-65. https://doi.org/10.1038/nbt0196-61
Wilkins, M.R., Sanchez, J.C., Gooley, A.A., Appel, R.D., Humphery-Smith, I., Hochstrasser, D.F. and Williams, K.L., 1996b. Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnology and Genetic Engineering Reviews 13: 19-50. https://doi.org/10.1080/02648725.1996.10647923
Zani, L., Forth, J.H., Forth, L., Nurmoja, I., Leidenberger, S., Henke, J., Carlson, J., Breidenstein, C., Viltrop, A., Höper, D., Sauter-Louis, C., Beer, M. and Blome, S., 2018. Deletion at the 5´-end of Estonian ASFV strains associated with an attenuated phenotype. Scientific Reports 8: 6510. https://doi.org/10.1038/s41598-018-24740-1