3. Immune responses against African swine fever virus infection

In: Understanding and combatting African Swine Fever
Authors:
M. Montoya Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Ramiro de Maeztu 9, 20840 Madrid, Spain.

Search for other papers by M. Montoya in
Current site
Google Scholar
PubMed
Close
,
G. Franzoni Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy.

Search for other papers by G. Franzoni in
Current site
Google Scholar
PubMed
Close
,
D. Pérez-Nuñez Centro de Biología Molecular Severo Ochoa (CBMSO), Calle Nicolás Cabrera, 1, 28049 Madrid, Spain.

Search for other papers by D. Pérez-Nuñez in
Current site
Google Scholar
PubMed
Close
,
Y. Revilla Centro de Biología Molecular Severo Ochoa (CBMSO), Calle Nicolás Cabrera, 1, 28049 Madrid, Spain.

Search for other papers by Y. Revilla in
Current site
Google Scholar
PubMed
Close
,
I. Galindo Dpt. Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de la Coruña km 7.5, 28040 Madrid, Spain.

Search for other papers by I. Galindo in
Current site
Google Scholar
PubMed
Close
,
C. Alonso Dpt. Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de la Coruña km 7.5, 28040 Madrid, Spain.

Search for other papers by C. Alonso in
Current site
Google Scholar
PubMed
Close
,
C.L. Netherton The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 ONF, United Kingdom.

Search for other papers by C.L. Netherton in
Current site
Google Scholar
PubMed
Close
, and
U. Blohm Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Immunology, Suedufer 10, 17493 Greifswald-Insel Riems, Germany.

Search for other papers by U. Blohm in
Current site
Google Scholar
PubMed
Close
Open Access

Infection with African swine fever virus (ASFV) leads to a short haemorrhagic course of disease that, depending on the virus isolate, results in up to 100% lethality in domestic and Eurasian wild pigs. Consequently, ASFV infection in swine is of considerable economic significance. This chapter explains the basics of antiviral immunity in swine, focusing on the ‘knowns’ and ‘unknowns’ of the response against ASFV. In particular, monocytes and macrophages play an essential role as the main targets of infection and are crucial in viral persistence and dissemination. Furthermore, ASFV has developed several mechanisms to influence the antiviral and cell biological activity of infected monocytes, including down-regulation of cell surface receptors (e.g. CD14 and MHC-I) and modulation of interferon and cytokine/chemokine responses. ASFV infected pigs also develop virus-specific antibodies that can be used diagnostically, and while the neutralising effect of these antibodies has led to their involvement in protective immunity being controversially discussed, they may still exhibit protective functions through complement-mediated lysis and/or antibody dependent cell-mediated cytotoxicity. Indeed, T cells (presumably CD8+) also play a central role in the elimination of the virus, as can be seen in experiments where, after depletion of these cells, pigs previously primed with an avirulent ASFV become ill, while non-depleted animals are protected from highly virulent challenge. Nonetheless, despite these advances in our knowledge, much remains unknown about antiviral immunity generated during the course of a natural ASFV infection, or in response to attenuated virus strains or immunisation. Although such studies would undoubtedly be technically challenging, a deeper understanding of the immunity developed by the natural hosts (i.e. bushpigs and warthogs) against ASFV infection would teach us a lot about an effective protection from ASFV infection, and the involvement of both the innate and adaptive immune systems in this process.

  • Afonso, C.L., Piccone, M.E., Zaffuto, K.M., Neilan, J., Kutish, G.F., Lu, Z., Balinsky, C.A., Gibb, T.R., Bean, T.J., Zsak, L. and Rock, D.L., 2004. African swine fever virus multigene family 360 and 530 genes affect host interferon response. Journal of Virology 78: 1858-1864. https://doi.org/10.1128/jvi.78.4.1858-1864.2004

  • Alonso, F., Dominguez, J., Viñuela, E. and Revilla, Y., 1997. African swine fever virus-specific cytotoxic T lymphocytes recognize the 32 kDa immediate early protein (vp32). Virus Research 49: 123-130. https://doi.org/10.1016/s0168-1702(97)01459-7

  • Argilaguet J.M., Pérez-Martín E., Nofrarías M., Gallardo C., Accensi F., Lacasta A., Mora M., Ballester M., Galindo-Cardiel I., López-Soria S., Escribano J.M., Reche P.A. and Rodríguez F., 2012. DNA vaccination partially protects against African swine fever virus lethal challenge in the absence of antibodies. PLoS One 7: e40942. https://doi.org/10.1371/journal.pone.0040942

  • Arias, M.L., De La Torre, A., Dixon, L., Gallardo, C., Jori, F., Laddomada, A., Martins, C., Parkhouse, M., Revilla, Y., Rodríguez, F. and Sánchez-Vizcaíno, J.M., 2017. Blueprint and Roadmap on the possible development of a vaccine for African swine fever prepared by the African swine fever EU reference laboratory on Commission request. European Commission, Directorate-General for Health and Food Safety, Brussels, Belgium.

  • Banchereau, J. and Steinman, R.M., 1998. Dendritic cells and the control of immunity. Nature 392: 245-252. https://doi.org/10.1038/32588

  • Basta, S., Knoetig, S.M., Spagnuolo-Weaver, M., Allan, G. and McCullough, K.C., 1999. Modulation of monocytic cell activity and virus susceptibility during differentiation into macrophages. Journal of Immunology 162: 3961-3969.

  • Borca, M.V., Carrillo, C., Zsak, L., Laegreid, W.W., Kutish, G.F., Neilan, J.G., Burrage, T.G. and Rock, D.L., 1998. Deletion of a CD2-like gene, 8-DR, from African swine fever virus affects viral infection in domestic swine. Journal of Virology 72: 2881-2889.

  • Burmakina, G., Malogolovkin, A., Tulman, E.R., Xu, W., Delhon, G., Kolbasov, D. and Rock, D.L., 2019. Identification of T-cell epitopes in African swine fever virus CD2v and C-type lectin proteins. Journal of General Virology 100: 259-265. https://doi.org/10.1099/jgv.0.001195

  • Butler, J.E., Wertz, N. and Sinkora, M., 2017. Antibody repertoire development in swine. Annual Review of Animal Biosciences 5: 255-279. https://doi.org/10.1146/annurev-animal-022516-022818

  • Canals, A., Alonso, F., Tomillo, J. and Domínguez, J., 1992. Analysis of T lymphocyte subsets proliferating in response to infective and UV-inactivated African swine fever viruses. Veterinary Microbiology 33: 117-127. https://doi.org/10.1016/0378-1135(92)90040-z

  • Casal, I., Viñuela, E. and Enjuanes, L., 1987. Synthesis of African swine fever (ASF) virus-specific antibodies in vitro in a porcine leucocyte system. Immunology 62: 207-213.

  • Childerstone, A., Takamatsu, H., Yang, H., Denyer, M. and Parkhouse, R.M., 1998. Modulation of T cell and monocyte function in the spleen following infection of pigs with African swine fever virus. Veterinary Immunology and Immunopathology 62: 281-296. https://doi.org/10.1016/s0165-2427(97)00173-6

  • Collin, M. and Bigley, V., 2018. Human dendritic cell subsets: an update. Immunology 154: 3-20. https://doi.org/10.1111/imm.12888

  • Correia, S., Ventura, S. and Parkhouse, R.M., 2013. Identification and utility of innate immune system evasion mechanisms of ASFV. Virus Research 173: 87-100. https://doi.org/10.1016/j.virusres.2012.10.013

  • De Oliveira, V.L., Almeida, S.C., Soares, H.R., Crespo, A., Marshall-Clarke, S. and Parkhouse, R.M., 2011. A novel TLR3 inhibitor encoded by African swine fever virus (ASFV). Archives of Virology 156: 597-609. https://doi.org/10.1007/s00705-010-0894-7

  • De Pelsmaeker, S., Devriendt, B., Leclercq, G. and Favoreel, H.W., 2018. Porcine NK cells display features associated with antigen-presenting cells. Journal of Leukocyte Biology 103: 129-140. https://doi.org/10.1002/JLB.4A0417-163RR

  • Denyer, M.S., Wileman, T.E., Stirling, C.M., Zuber, B. and Takamatsu, H.H., 2006. Perforin expression can define CD8 positive lymphocyte subsets in pigs allowing phenotypic and functional analysis of natural killer, cytotoxic T, natural killer T and MHC un-restricted cytotoxic T-cells. Veterinary Immunology and Immunopathology 110: 279-292. https://doi.org/10.1016/j.vetimm.2005.10.005

  • Dixon, L.K., Islam, M., Nash, R. and Reis, A.L., 2019. African swine fever virus evasion of host defences. Virus Research 266: 25-33. https://doi.org/10.1016/j.virusres.2019.04.002

  • Escribano, J.M., Galindo, I. and Alonso, C., 2013. Antibody-mediated neutralization of African swine fever virus: myths and facts. Virus Research 173: 101-109. https://doi.org/10.1016/j.virusres.2012.10.012

  • Fishbourne, E., Abrams, C.C., Takamatsu, H.H. and Dixon, L.K., 2013. Modulation of chemokine and chemokine receptor expression following infection of porcine macrophages with African swine fever virus. Veterinary Microbiology 162: 937-943. https://doi.org/10.1016/j.vetmic.2012.11.027

  • Franzoni, G., Dei Giudici, S. and Oggiano, A., 2018. Infection, modulation and responses of antigen-presenting cells to African swine fever viruses. Virus Research 258: 73-80. https://doi.org/10.1016/j.virusres.2018.10.007

  • Franzoni, G., Edwards, J.C., Kurkure, N.V., Edgar, D.S., Sanchez-Cordon, P.J., Haines, F.J., Salguero, F.J., Everett, H.E., Bodman-Smith, K.B., Crooke, H.R. and Graham, S.P., 2014. Partial Activation of natural killer and gammadelta T cells by classical swine fever viruses is associated with type I interferon elicited from plasmacytoid dendritic cells. Clinical and Vaccine Immunology 21: 1410-1420. https://doi.org/10.1128/CVI.00382-14

  • Franzoni, G., Graham, S.P., Dei Giudici, S. and Oggiano, A., 2019. Porcine dendritic cells and viruses: an update. Viruses 11: 445. https://doi.org/10.3390/v11050445

  • Franzoni, G., Graham, S.P., Giudici, S.D., Bonelli, P., Pilo, G., Anfossi, A.G., Pittau, M., Nicolussi, P.S., Laddomada, A. and Oggiano, A., 2017. Characterization of the interaction of African swine fever virus with monocytes and derived macrophage subsets. Veterinary Microbiology 198: 88-98. https://doi.org/10.1016/j.vetmic.2016.12.010

  • Franzoni, G., Graham, S.P., Sanna, G., Angioi, P., Fiori, M.S., Anfossi, A., Amadori, M., Dei Giudici, S. and Oggiano, A., 2018. Interaction of porcine monocyte-derived dendritic cells with African swine fever viruses of diverse virulence. Veterinary Microbiology 216: 190-197. https://doi.org/10.1016/j.vetmic.2018.02.021

  • Franzoni, G., Razzuoli, E., Dei Giudici, S., Carta, T., Galleri, G., Zinellu, S., Ledda, M., Angioi, P., Modesto, P., Graham, S.P. and Oggiano, A., 2020. Comparison of macrophage responses to African swine fever viruses reveals that the NH/P68 strain is associated with enhanced sensitivity to type I IFN and cytokine responses from classically activated macrophages. Pathogens 9: 209. https://doi.org/10.3390/pathogens9030209

  • García-Belmonte, R., Pérez-Núñez, D., Pittau, M., Richt, J.A. and Revilla, Y., 2019. African swine fever virus Armenia/07 virulent strain controls interferon beta production through the cGAS-STING pathway. Journal of Virology 93. https://doi.org/10.1128/JVI.02298-18

  • Gil, S., Sepúlveda, N., Albina, E., Leitão, A. and Martins, C., 2008. The low-virulent African swine fever virus (ASFV/NH/P68) induces enhanced expression and production of relevant regulatory cytokines (IFNalpha, TNFalpha and IL12p40) on porcine macrophages in comparison to the highly virulent ASFV/L60. Archives of Virology 153: 1845-1854. https://doi.org/10.1007/s00705-008-0196-5

  • Gil, S., Spagnuolo-Weaver, M., Canals, A., Sepúlveda, N., Oliveira, J., Aleixo, A., Allan, G., Leitão, A. and Martins, C.L., 2003. Expression at mRNA level of cytokines and A238L gene in porcine blood-derived macrophages infected in vitro with African swine fever virus (ASFV) isolates of different virulence. Archives of Virology 148: 2077-2097. https://doi.org/10.1007/s00705-003-0182-x

  • Golding, J.P., Goatley, L., Goodbourn, S., Dixon, L.K., Taylor, G. and Netherton, C.L., 2016. Sensitivity of African swine fever virus to type I interferon is linked to genes within multigene families 360 and 505. Virology 493: 154-161. https://doi.org/10.1016/j.virol.2016.03.019

  • Gómez-Puertas, P. and Escribano, J.M., 1997. Blocking antibodies inhibit complete African swine fever virus neutralization. Virus Research 49: 115-122. https://doi.org/10.1016/s0168-1702(97)01463-9

  • Gómez-Puertas, P., Rodríguez, F., Oviedo, J.M., Ramiro-Ibáñez, F., Ruiz-Gonzalvo, F., Alonso, C. and Escribano, J.M., 1996. Neutralizing antibodies to different proteins of African swine fever virus inhibit both virus attachment and internalization. Journal of Virology 70: 5689-5694.

  • Granja, A.G., Perkins, N.D. and Revilla, Y., 2008. A238L inhibits NF-ATc2, NF-kappa B, and c-Jun activation through a novel mechanism involving protein kinase C-theta-mediated up-regulation of the amino-terminal transactivation domain of p300. Journal of Immunology 180: 2429-2442. https://doi.org/10.4049/jimmunol.180.4.2429

  • Gregg, D.A., Mebus, C.A. and Schlafer, D.H., 1995. Early infection of interdigitating dendritic cells in the pig lymph node with African swine fever viruses of high and low virulence: immunohistochemical and ultrastructural studies. Journal of Veterinary Diagnostic Investigation 7: 23-30. https://doi.org/10.1177/104063879500700104

  • Hühr, J., Schäfer, A., Schwaiger, T., Zani, L., Sehl, J., Mettenleiter, T.C., Blome, S. and Blohm, U., 2020. Impaired T-cell responses in domestic pigs and wild boar upon infection with a highly virulent African swine fever virus strain. Transboundary and Emerging Diseases 67: 3016-3032. https://doi.org/10.1111/tbed.13678

  • Hume, D.A., 2015. The many alternative faces of macrophage activation. Frontiers in Immunology 6: 370. https://doi.org/10.3389/fimmu.2015.00370

  • Italiani, P. and Boraschi, D., 2014. From monocytes to M1/M2 macrophages: phenotypical vs. functional differentiation. Frontiers in Immunology 5: 514. https://doi.org/10.3389/fimmu.2014.00514

  • Karalyan, Z., Zakaryan, H., Sargsyan, K., Voskanyan, H., Arzumanyan, H., Avagyan, H. and Karalova, E., 2012. Interferon status and white blood cells during infection with African swine fever virus in vivo. Veterinary Immunology and Immunopathology 145: 551-555. https://doi.org/10.1016/j.vetimm.2011.12.013

  • Lanier, L.L., 2005. NK cell recognition. Annual Review of Immunology 23: 225-274. https://doi.org/10.1146/annurev.immunol.23.021704.115526

  • Lefevre, E.A., Carr, B.V., Inman, C.F., Prentice, H., Brown, I.H., Brookes, S.M., Garcon, F., Hill, M.L., Iqbal, M., Elderfield, R.A., Barclay, W.S., Gubbins, S., Bailey, M., Charleston, B. and Cosi, 2012. Immune responses in pigs vaccinated with adjuvanted and non-adjuvanted A(H1N1)pdm/09 influenza vaccines used in human immunization programmes. PLoS One 7: e32400. https://doi.org/10.1371/journal.pone.0032400

  • Leitão, A., Cartaxeiro, C., Coelho, R., Cruz, B., Parkhouse, R.M.E., Portugal, F.C., Vigário, J.D. and Martins, C.L.V., 2001. The non-haemadsorbing African swine fever virus isolate ASFV/NH/P68 provides a model for defining the protective anti-virus immune response. Journal of General Virology 82: 513-523. https://doi.org/10.1099/0022-1317-82-3-513

  • Leitão, A., Malur, A., Cornelis, P. and Martins, C.L., 1998. Identification of a 25-aminoacid sequence from the major African swine fever virus structural protein VP72 recognised by porcine cytotoxic T lymphocytes using a lipoprotein-based expression system. Journal of Virology Methods 75: 113-119. https://doi.org/10.1016/s0166-0934(98)00105-0

  • Mair, K.H., Essler, S.E., Patzl, M., Storset, A.K., Saalmüller, A. and Gerner, W., 2012. NKp46 expression discriminates porcine NK cells with different functional properties. European Journal of Immunology 42: 1261-1271. https://doi.org/10.1002/eji.201141989

  • Martins, C.L. and Leitão, A.C., 1994. Porcine immune responses to African swine fever virus (ASFV) infection. Veterinary Immunology and Immunopathology 43: 99-106. https://doi.org/10.1016/0165-2427(94)90125-2

  • Martins, C.L., Lawman, M.J., Scholl, T., Mebus, C.A. and Lunney, J.K., 1993. African swine fever virus specific porcine cytotoxic T cell activity. Archives of Virology 129: 211-225. https://doi.org/10.1007/bf01316896

  • McCullough, K.C., Basta, S., Knötig, S., Gerber, H., Schaffner, R., Kim, Y.B., Saalmüller, A. and Summerfield, A., 1999. Intermediate stages in monocyte-macrophage differentiation modulate phenotype and susceptibility to virus infection. Immunology 98: 203-212. https://doi.org/10.1046/j.1365-2567.1999.00867.x

  • Medzhitov, R. and Janeway, C., Jr., 2000. Innate immunity. New England Journal of Medicine 343: 338-344. https://doi.org/10.1056/NEJM200008033430506

  • Mendoza, C., Videgain, S.P. and Alonso, F., 1991. Inhibition of natural killer activity in porcine mononuclear cells by African swine fever virus. Research in Veterinary Science 51: 317-321. https://doi.org/10.1016/0034-5288(91)90084-2

  • Mosser, D.M., 2003. The many faces of macrophage activation. Journal of Leukocyte Biology 73: 209-212. https://doi.org/10.1189/jlb.0602325

  • Muñoz-Moreno, R., Cuesta-Geijo, M.Á., Martínez-Romero, C., Barrado-Gil, L., Galindo, I., García-Sastre, A. and Alonso, C., 2016. Antiviral role of IFITM proteins in African swine fever virus infection. PLoS One 11: e0154366. https://doi.org/10.1371/journal.pone.0154366

  • Neilan, J.G., Zsak, L., Lu, Z., Burrage, T.G., Kutish, G.F. and Rock, D.L., 2004. Neutralizing antibodies to African swine fever virus proteins p30, p54, and p72 are not sufficient for antibody-mediated protection. Virology 319: 337-342. https://doi.org/10.1016/j.virol.2003.11.011

  • Netherton, C.L., Goatley, L.C., Reis, A.L., Portugal, R., Nash, R.H., Morgan, S.B., Gault, L., Nieto, R., Norlin, V., Gallardo, C., Ho, C.S., Sanchez-Cordon, P.J., Taylor, G. and Dixon, L.K., 2019. Identification and immunogenicity of African Swine fever virus antigens. Frontiers in Immunology 10: 1318. https://doi.org/10.3389/fimmu.2019.01318

  • Netherton, C.L., Simpson, J., Haller, O., Wileman, T.E., Takamatsu, H.H., Monaghan, P. and Taylor, G., 2009. Inhibition of a large double-stranded DNA virus by MxA protein. Journal of Virology 83: 2310-2320. https://doi.org/10.1128/JVI.00781-08

  • Norley, S.G. and Wardley, R.C., 1983. Investigation of porcine natural-killer cell activity with reference to African swine-fever virus infection. Immunology 49: 593-597.

  • Norley, S.G. and Wardley, R.C., 1984. Cytotoxic lymphocytes induced by African swine fever infection. Research in Veterinary Science 37: 255-257.

  • O’Donnell, V., Holinka, L.G., Gladue, D.P., Sanford, B., Krug, P.W., Lu, X., Arzt, J., Reese, B., Carrillo, C., Risatti, G.R. and Borca, M.V., 2015. African swine fever virus Georgia isolate harboring deletions of MGF360 and MGF505 genes is attenuated in swine and confers protection against challenge with virulent parental virus. Journal of Virology 89: 6048-6056. https://doi.org/10.1128/JVI.00554-15

  • Okutani, M., Tsukahara, T., Kato, Y., Fukuta, K. and Inoue, R., 2018. Gene expression profiles of CD4/CD8 double-positive T cells in porcine peripheral blood. Animal Science Journal 89: 979-987. https://doi.org/10.1111/asj.13021

  • Onisk, D.V., Borca, M.V., Kutish, G., Kramer, E., Irusta, P. and Rock, D.L., 1994. Passively transferred African swine fever virus antibodies protect swine against lethal infection. Virology 198: 350-354. https://doi.org/10.1006/viro.1994.1040

  • Oura, C.A.L., Denyer, M.S., Takamatsu, H. and Parkhouse, R.M.E., 2005. In vivo depletion of CD8+ T lymphocytes abrogates protective immunity to African swine fever virus. Journal of General Virology 86: 2445-2450. https://doi.org/10.1099/vir.0.81038-0

  • Pérez-Núñez, D., García-Urdiales, E., Martínez-Bonet, M., Nogal, M.L., Barroso, S., Revilla, Y. and Madrid, R., 2015. CD2v interacts with adaptor protein AP-1 during African swine fever infection. PLoS One 10: e0123714. https://doi.org/10.1371/journal.pone.0123714

  • Pietschmann, J., Mur, L., Blome, S., Beer, M., Pérez-Sánchez, R., Oleaga, A. and Sánchez-Vizcaíno, J.M., 2016. African swine fever virus transmission cycles in Central Europe: evaluation of wild boar-soft tick contacts through detection of antibodies against Ornithodoros erraticus saliva antigen. BMC Veterinary Research 12: 1. https://doi.org/10.1186/s12917-015-0629-9

  • Popescu, L., Gaudreault, N.N., Whitworth, K.M., Murgia, M.V., Nietfeld, J.C., Mileham, A., Samuel, M., Wells, K.D., Prather, R.S. and Rowland, R.R.R., 2017. Genetically edited pigs lacking CD163 show no resistance following infection with the African swine fever virus isolate, Georgia 2007/1. Virology 501: 102-106. https://doi.org/10.1016/j.virol.2016.11.012

  • Portugal, R., Coelho, J., Höper, D., Little, N.S., Smithson, C., Upton, C., Martins, C., Leitão, A. and Keil, G.M., 2015. Related strains of African swine fever virus with different virulence: genome comparison and analysis. Journal of General Virology 96: 408-419. https://doi.org/10.1099/vir.0.070508-0

  • Portugal, R., Leitão, A. and Martins, C., 2018. Modulation of type I interferon signaling by African swine fever virus (ASFV) of different virulence L60 and NHV in macrophage host cells. Veterinary Microbiology 216: 132-141. https://doi.org/10.1016/j.vetmic.2018.02.008

  • Post, J., Weesendorp, E., Montoya, M. and Loeffen, W.L., 2017. Influence of age and dose of African swine fever virus infections on clinical outcome and blood parameters in pigs. Viral Immunology 30: 58-69. https://doi.org/10.1089/vim.2016.0121

  • Razzuoli, E., Franzoni, G., Carta, T., Zinellu, S., Amadori, M., Modesto, P. and Oggiano, A., 2020. Modulation of Type I interferon system by African swine fever virus. Pathogens 9: 361. https://doi.org/10.3390/pathogens9050361

  • Reis, A.L., Abrams, C.C., Goatley, L.C., Netherton, C., Chapman, D.G., Sánchez-Cordón, P.J. and Dixon, L.K., 2016. Deletion of African swine fever virus interferon inhibitors from the genome of a virulent isolate reduces virulence in domestic pigs and induces a protective response. Vaccine 34: 4698-4705. https://doi.org/10.1016/j.vaccine.2016.08.011

  • Reutner, K., Leitner, J., Müllebner, A., Ladinig, A., Essler, S.E., Duvigneau, J.C., Ritzmann, M., Steinberger, P., Saalmüller, A. and Gerner, W., 2013. CD27 expression discriminates porcine T helper cells with functionally distinct properties. Veterinary Research 44: 18. https://doi.org/10.1186/1297-9716-44-18

  • Revilla, Y., Pena, L. and Viñuela, E., 1992. Interferon-gamma production by African swine fever virus-specific lymphocytes. Scandinavian Journal of Immunology 35: 225-230. https://doi.org/10.1111/j.1365-3083.1992.tb02854.x

  • Rock, D.L., 2017. Challenges for African swine fever vaccine development – … perhaps the end of the beginning. Veterinary Microbiology 206: 52-58. https://doi.org/10.1016/j.vetmic.2016.10.003

  • Ruiz-Gonzalvo, F., Rodríguez, F. and Escribano, J.M., 1996. Functional and immunological properties of the baculovirus-expressed hemagglutinin of African swine fever virus. Virology 218: 285-289. https://doi.org/10.1006/viro.1996.0193

  • Saalmüller, A., Reddehase, M.J., Bühring, H.J., Jonjić, S. and Koszinowski, U.H., 1987. Simultaneous expression of CD4 and CD8 antigens by a substantial proportion of resting porcine T lymphocytes. European Journal of Immunology 17: 1297-1301. https://doi.org/10.1002/eji.1830170912

  • Saalmüller, A., Werner, T. and Fachinger, V., 2002. T-helper cells from naive to committed. Veterinary Immunology and Immunopathology 87: 137-145. https://doi.org/10.1016/s0165-2427(02)00045-4

  • Sánchez-Cordón, P.J., Jabbar, T., Chapman, D., Dixon, L.K. and Montoya, M., 2020. Absence of long-term protection in domestic pigs immunized with attenuated African swine fever virus isolate OURT88/3 or BeninDeltaMFG correlates with increased levels of regulatory T cells and IL-10. Journal of Virology 94: e00350-20. https://doi.org/10.1128/JVI.00350-20

  • Sánchez-Cordón, P.J., Romero-Trevejo, J.L., Pedrera, M., Sanchez-Vizcaino, J.M., Bautista, M.J. and Gomez-Villamandos, J.C., 2008. Role of hepatic macrophages during the viral haemorrhagic fever induced by African swine fever virus. Histolology and Histopathology 23: 683-691. https://doi.org/10.14670/HH-23.683

  • Sánchez-Torres, C., Gómez-Puertas, P., Gómez-del-Moral, M., Alonso, F., Escribano, J.M., Ezquerra, A. and Domínguez, J., 2003. Expression of porcine CD163 on monocytes/macrophages correlates with permissiveness to African swine fever infection. Archives of Virology 148: 2307-2323. https://doi.org/10.1007/s00705-003-0188-4

  • Schäfer, A., Hühr, J., Schwaiger, T., Dorhoi, A., Mettenleiter, T.C., Blome, S., Schröder, C. and Blohm, U., 2019. Porcine invariant natural killer T cells: functional profiling and dynamics in steady state and viral infections. Frontiers in Immunology 10: 1380. https://doi.org/10.3389/fimmu.2019.01380

  • Schlafer, D.H., McVicar, J.W. and Mebus, C.A., 1984a. African swine fever convalescent sows: subsequent pregnancy and the effect of colostral antibody on challenge inoculation of their pigs. American Journal of Veterinary Research 45: 1361-1366.

  • Schlafer, D.H., Mebus, C.A. and McVicar, J.W., 1984b. African swine fever in neonatal pigs: passively acquired protection from colostrum or serum of recovered pigs. American Journal of Veterinary Research 45: 1367-1372.

  • Sedlak, C., Patzl, M., Saalmüller, A. and Gerner, W., 2014. CD2 and CD8alpha define porcine gammadelta T cells with distinct cytokine production profiles. Developmental and Comparative Immunology 45: 97-106. https://doi.org/10.1016/j.dci.2014.02.008

  • Singleton, H., Graham, S.P., Bodman-Smith, K.B., Frossard, J.P. and Steinbach, F., 2016. Establishing porcine monocyte-derived macrophage and dendritic cell systems for studying the interaction with PRRSV-1. Frontiers in Microbiology 7: 832. https://doi.org/10.3389/fmicb.2016.00832

  • Summerfield, A., 2012. Viewpoint: factors involved in type I interferon responses during porcine virus infections. Veterinary Immunology and Immunopathology 148: 168-171. https://doi.org/10.1016/j.vetimm.2011.03.011

  • Sun, L., Wu, J., Du, F., Chen, X. and Chen, Z.J., 2013. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339: 786-791. https://doi.org/10.1126/science.1232458

  • Takamatsu, H.H., Denyer, M.S., Lacasta, A., Stirling, C.M., Argilaguet, J.M., Netherton, C.L., Oura, C.A., Martins, C. and Rodriguez, F., 2013. Cellular immunity in ASFV responses. Virus Research 173: 110-121. https://doi.org/10.1016/j.virusres.2012.11.009

  • Takamatsu, H.H., Denyer, M.S., Stirling, C., Cox, S., Aggarwal, N., Dash, P., Wileman, T.E. and Barnett, P.V., 2006. Porcine gammadelta T cells: possible roles on the innate and adaptive immune responses following virus infection. Veterinary Immunology and Immunopathology 112: 49-61. https://doi.org/10.1016/j.vetimm.2006.03.011

  • Takeuchi, O. and Akira, S., 2010. Pattern recognition receptors and inflammation. Cell 140: 805-820.

  • Wu, J. and Chen, Z.J., 2014. Innate immune sensing and signaling of cytosolic nucleic acids. Annual Review of Immunology 32: 461-488. https://doi.org/10.1146/annurev-immunol-032713-120156

  • Yang, H. and Parkhouse, R.M., 1996. Phenotypic classification of porcine lymphocyte subpopulations in blood and lymphoid tissues. Immunology 89: 76-83. https://doi.org/10.1046/j.1365-2567.1996.d01-705.x

  • Zhu, J.J., Ramanathan, P., Bishop, E.A., O’Donnell, V., Gladue, D.P. and Borca, M.V., 2019. Mechanisms of African swine fever virus pathogenesis and immune evasion inferred from gene expression changes in infected swine macrophages. PLoS One 14: e0223955. https://doi.org/10.1371/journal.pone.0223955

  • Zsak, L., Onisk, D.V., Afonso, C.L. and Rock, D.L., 1993. Virulent African swine fever virus isolates are neutralized by swine immune serum and by monoclonal antibodies recognising a 72-kDa viral protein. Virology 196: 596-602. https://doi.org/10.1006/viro.1993.1515

  • Collapse
  • Expand