4. Pathology of African swine fever

In: Understanding and combatting African Swine Fever
Authors:
P.J. Sánchez-Cordón Pathology Department, Animal and Plant Health Agency, APHA-Weybridge, Addlestone, KT153NB, United Kingdom.
European Union Reference Laboratory for African Swine Fever (EURL), Centro de Investigación en Sanidad Animal, CISA-INIA, Valdeolmos, 28130 Madrid, Spain.

Search for other papers by P.J. Sánchez-Cordón in
Current site
Google Scholar
PubMed
Close
,
B. Vidaña Pathology Department, Animal and Plant Health Agency, APHA-Weybridge, Addlestone, KT153NB, United Kingdom.
Bristol Veterinary School, Faculty of Health Science, University of Bristol, Langford, BS40 4UD, United Kingdom.

Search for other papers by B. Vidaña in
Current site
Google Scholar
PubMed
Close
,
A. Neimanis Department of Pathology and Wildlife Diseases, National Veterinary Institute (SVA), 751 89, Uppsala, Sweden.

Search for other papers by A. Neimanis in
Current site
Google Scholar
PubMed
Close
,
A. Núñez Pathology Department, Animal and Plant Health Agency, APHA-Weybridge, Addlestone, KT153NB, United Kingdom.

Search for other papers by A. Núñez in
Current site
Google Scholar
PubMed
Close
,
E. Wikström Department of Pathology and Wildlife Diseases, National Veterinary Institute (SVA), 751 89, Uppsala, Sweden.

Search for other papers by E. Wikström in
Current site
Google Scholar
PubMed
Close
, and
D. Gavier-Widén Department of Pathology and Wildlife Diseases, National Veterinary Institute (SVA), 751 89, Uppsala, Sweden.
Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), Box 7028, 750 07 Uppsala, Sweden.

Search for other papers by D. Gavier-Widén in
Current site
Google Scholar
PubMed
Close
Open Access

African swine fever (ASF) is a haemorrhagic viral disease of domestic pigs and wild boar (both Sus scrofa species) that seriously impacts pig production worldwide. Pathology plays a key role not only in identifying and characterising macroscopic and histopathological lesions, but also in studying pathogenesis, thus complementing other disciplines to provide a broad understanding of host-virus interactions, which contributes to the development of vaccines and therapies. The aim of the present chapter is to provide a compilation of the most characteristic macroscopic and histopathological lesions associated with the different clinical forms of ASF (peracute, acute, subacute and chronic). Another aim is to present the current state of knowledge regarding ASF pathogenesis, with special attention to target cells, virus distribution and virus load in multiple organ locations and its correlation with the appearance of clinical signs and lesions from early stages to terminal disease. For that purpose, the chapter includes a complete collection of original macroscopic and microscopic photographs, the latter including illustrations of haematoxylin and eosin-stained sections and immunohistochemistry to identify the ASF-virus (ASFV). The photographs were obtained from experimental infections with ASFV isolates of different virulence carried out over the last two decades in different research centres. The purpose is to provide a reference that may be useful for the early recognition of ASF by veterinary practitioners working in the field and researchers focused on characterising new ASFV isolates or testing new vaccines and treatments.

  • Achenbach, J.E., Gallardo, C., Nieto-Pelegrín, E., Rivera-Arroyo, B., Degefa-Negi, T., Arias, M., Jenberie, S., Mulisa, D.D., Gizaw, D., Gelaye, E., Chibssa, T.R., Belaye, A., Loitsch, A., Forsa, M., Yami, M., Diallo, A., Soler, A., Lamien, C.E. and Sánchez-Vizcaíno, J.M., 2017. Identification of a new genotype of African swine fever virus in domestic pigs from Ethiopia. Transboundary and Emerging Diseases 64: 1393-1404. https://doi.org/10.1111/tbed.12511

  • Alcamí, A., Carrascosa, A.L. and Viñuela, E., 1989. The entry of African swine fever virus into Vero cells. Virology 171: 68-75. https://doi.org/10.1016/0042-6822(89)90511-4

  • Anderson, E.C., Williams, S.M., Fisher-Hoch, S.P. and Wilkinson, P.J., 1987. Arachidonic acid metabolites in the pathophysiology of thrombocytopenia and haemorrhage in acute African swine fever. Research in Veterinary Science 42: 387-394.

  • Bautista, M.J., Gómez-Villamandos, J.C., Carrasco, L., Ruíz-Villamor, E., Salguero, F.J. and Sierra, M.A., 1998. Ultrastructural pathology of the bone marrow in pigs inoculated with a moderately virulent strain (DR’78) of African swine fever virus. Histology and Histopathology 13: 713-720. https://doi.org/10.14670/hh-13.713

  • Blome, S., Gabriel, C. and Beer, M., 2013. Pathogenesis of African swine fever in domestic pigs and European wild boar. Virus Research 173: 122-130. https://doi.org/10.1016/j.virusres.2012.10.026

  • Boinas, F.S., Hutchings, G.H., Dixon, L.K. and Wilkinson, P.J., 2004. Characterization of pathogenic and non-pathogenic African swine fever virus isolates from Ornithodoros erraticus inhabiting pig premises in Portugal. Journal of General Virology 85: 2177-2187. https://doi.org/10.1099/vir.0.80058-0

  • Borca, M.V., Kutish, G.F., Afonso, C.L., Irusta, P., Carrillo, C., Brun, A., Sussman, M. and Rock, D.L., 1994. An African swine fever virus gene with similarity to the T-lymphocyte surface antigen CD2 mediates hemadsorption. Virology 199: 463-468. https://doi.org/10.1006/viro.1994.1146

  • Carrasco, L., Bautista, M.J., Gomez-Villamandos, J.C., Martin de las Mulas, J., Chacon, M.d.L.F., Wilkinson, P.J. and Sierra, M.A., 1997a. Development of microscopic lesions in splenic cords of pigs infected with African swine fever virus. Veterinary Research 28: 93-99.

  • Carrasco, L., Bautista, M.J., Martin de las Mulas, J., Gomez-Villamandos, J.C., Espinosa de los Monteros, A. and Sierra, M.A., 1995. Description of a new population of fixed macrophages in the splenic cords of pigs. Journal of Anatomy 187 (Part 2): 395-402.

  • Carrasco, L., Chàcón, M.d.L.F., Martín de Las Mulas, J., Gómez-Villamandos, J.C., Sierra, M.A., Villeda, C.J. and Wilkinson, P.J., 1997b. Ultrastructural changes related to the lymph node haemorrhages in acute African swine fever. Research in Veterinary Science 62: 199-204. https://doi.org/10.1016/s0034-5288(97)90190-9

  • Carrasco, L., de Lara, F.C., Gómez-Villamandos, J.C., Bautista, M.J., Villeda, C.J., Wilkinson, P.J. and Sierra, M.A., 1996a. The pathogenic role of pulmonary intravascular macrophages in acute African swine fever. Research in Veterinary Science 61: 193-198. https://doi.org/10.1016/s0034-5288(96)90062-4

  • Carrasco, L., de Lara, F.C., Martín de las Mulas, J., Gómez-Villamandos, J.C., Hervás, J., Wilkinson, P.J. and Sierra, M.A., 1996b. Virus association with lymphocytes in acute African swine fever. Veterinary Research 27: 305-312.

  • Carrasco, L., de Lara, F.C., Martín de las Mulas, J., Gómez-Villamandos, J.C., Pérez, J., Wilkinson, P.J. and Sierra, M.A., 1996c. Apoptosis in lymph nodes in acute African swine fever. Journal of Comparative Pathology 115: 415-428.

  • Carrasco, L., Gómez-Villamandos, J.C., Bautista, M.J., Martín de las Mulas, J., Villeda, C.J., Wilkinson, P.J. and Sierra, M.A., 1996d. In vivo replication of African swine fever virus (Malawi ‘83) in neutrophils. Veterinary Research 27: 55-62.

  • Carrasco, L., Núñez, A., Salguero, F.J., Díaz San Segundo, F., Sánchez-Cordón, P., Gómez-Villamandos, J.C. and Sierra, M.A., 2002. African swine fever: expression of interleukin-1 alpha and tumour necrosis factor-alpha by pulmonary intravascular macrophages. Journal of Comparative Pathology 126: 194-201. https://doi.org/10.1053/jcpa.2001.0543

  • Colgrove, G.S., Haelterman, E.O. and Coggins, L., 1969. Pathogenesis of African swine fever in young pigs. American Journal of Veterinary Research 30: 1343-1359.

  • De Carvalho Ferreira, H.C., Weesendorp, E., Elbers, A.R., Bouma, A., Quak, S., Stegeman, J.A. and Loeffen, W.L., 2012. African swine fever virus excretion patterns in persistently infected animals: a quantitative approach. Veterinary Microbiology 160: 327-340. https://doi.org/10.1016/j.vetmic.2012.06.025

  • Dixon, L.K., Sánchez-Cordón, P.J., Galindo, I. and Alonso, C., 2017. Investigations of pro- and anti-apoptotic factors affecting African swine fever virus replication and pathogenesis. Viruses 9: 241. https://doi.org/10.3390/v9090241

  • Edwards, J.F., Dodds, W.J. and Slauson, D.O., 1985. Megakaryocytic infection and thrombocytopenia in African swine fever. Veterinary Pathology 22: 171-176. https://doi.org/10.1177/030098588502200212

  • Fernández de Marco, M., Salguero, F.J., Bautista, M.J., Núñez, A., Sánchez-Cordón, P.J. and Gómez-Villamandos, J.C., 2007. An immunohistochemical study of the tonsils in pigs with acute African swine fever virus infection. Research in Veterinary Science 83: 198-203. https://doi.org/10.1016/j.rvsc.2006.11.011

  • Fishbourne, E., Hutet, E., Abrams, C., Cariolet, R., Le Potier, M.F., Takamatsu, H.H. and Dixon, L.K., 2013. Increase in chemokines CXCL10 and CCL2 in blood from pigs infected with high compared to low virulence African swine fever virus isolates. Veterinary Research 44: 87. https://doi.org/10.1186/1297-9716-44-87

  • Franzoni, G., Graham, S.P., Sanna, G., Angioi, P., Fiori, M.S., Anfossi, A., Amadori, M., Dei Giudici, S. and Oggiano, A., 2018. Interaction of porcine monocyte-derived dendritic cells with African swine fever viruses of diverse virulence. Veterinary Microbiology 216: 190-197. https://doi.org/10.1016/j.vetmic.2018.02.021

  • Galindo-Cardiel, I., Ballester, M., Solanes, D., Nofrarías, M., López-Soria, S., Argilaguet, J.M., Lacasta, A., Accensi, F., Rodríguez, F. and Segalés, J., 2013. Standardization of pathological investigations in the framework of experimental ASFV infections. Virus Research 173: 180-190. https://doi.org/10.1016/j.virusres.2012.12.018

  • Galindo, I. and Alonso, C., 2017. African swine fever virus: a review. Viruses 9: 103. https://doi.org/10.3390/v9050103

  • Gallardo, C., Nieto, R., Mur, L., Soler, A., Pelayo, V., Bishop, R., Sánchez-Cordón, P.J., Martins, C., Sánchez-Vizcaíno, J.M. and Arias, M., 2012. African swine fever (ASF) in Africa. The role of the African indigenous pigs in the transmission of the disease. In: Proceedings of the 6th Annual Meeting Epizone Brighton, United Kingdom, p. 15.

  • Gallardo, C., Nurmoja, I., Soler, A., Delicado, V., Simón, A., Martin, E., Perez, C., Nieto, R. and Arias, M., 2018. Evolution in Europe of African swine fever genotype II viruses from highly to moderately virulent. Veterinary Microbiology 219: 70-79. https://doi.org/10.1016/j.vetmic.2018.04.001

  • Gallardo, C., Soler, A., Nieto, R., Sánchez, M.A., Martins, C., Pelayo, V., Carrascosa, A., Revilla, Y., Simón, A., Briones, V., Sánchez-Vizcaíno, J.M. and Arias, M., 2015a. Experimental transmission of African swine fever (ASF) low virulent isolate NH/P68 by surviving pigs. Transboundary and Emerging Diseases 62: 612-622. https://doi.org/10.1111/tbed.12431

  • Gallardo, C., Soler, A., Rodze, I., Nieto, R., Cano-Gómez, C., Fernandez-Pinero, J. and Arias, M., 2019. Attenuated and non-haemadsorbing (non-HAD) genotype II African swine fever virus (ASFV) isolated in Europe, Latvia 2017. Transboundary and Emerging Diseases 66: 1399-1404. https://doi.org/10.1111/tbed.13132

  • Gallardo, M.C., Reoyo, A.T., Fernández-Pinero, J., Iglesias, I., Muñoz, M.J. and Arias, M.L., 2015b. African swine fever: a global view of the current challenge. Porcine Health Management 1: 21. https://doi.org/10.1186/s40813-015-0013-y

  • Gómez-Villamandos, J.C., Bautista, M.J., Carrasco, L., Caballero, M.J., Hervás, J., Villeda, C.J., Wilkinson, P.J. and Sierra, M.A., 1997a. African swine fever virus infection of bone marrow: lesions and pathogenesis. Veterinary Pathology 34: 97-107. https://doi.org/10.1177/030098589703400202

  • Gómez-Villamandos, J.C., Bautista, M.J., Carrasco, L., Chacón-Manrique de Lara, F., Hervás, J., Wilkinson, P.J. and Sierra, M.A., 1998. Thrombocytopenia associated with apoptotic megakaryocytes in a viral haemorrhagic syndrome induced by a moderately virulent strain of African swine fever virus. Journal of Comparative Pathology 118: 1-13. https://doi.org/10.1016/s0021-9975(98)80023-6

  • Gómez-Villamandos, J.C., Bautista, M.J., Hervás, J., Carrasco, L., de Lara, F.C., Pérez, J., Wilkinson, P.J. and Sierra, M.A., 1996. Subcellular changes in platelets in acute and subacute African swine fever. Journal of Comparative Pathology 115: 327-341. https://doi.org/10.1016/s0021-9975(96)80069-7

  • Gómez-Villamandos, J.C., Bautista, M.J., Sánchez-Cordón, P.J. and Carrasco, L., 2013. Pathology of African swine fever: the role of monocyte-macrophage. Virus Research 173: 140-149. https://doi.org/10.1016/j.virusres.2013.01.017

  • Gomez-Villamandos, J.C., Carrasco, L.B., Bautista, M.J. and Sierra, M.A., 1999. Pathogenesis of African swine fever. The role of monokines. Recent Research Developments in Virology 1: 7-17.

  • Gómez-Villamandos, J.C., Hervás, J., Méndez, A., Carrasco, L., Martín de las Mulas, J., Villeda, C.J., Wilkinson, P.J. and Sierra, M.A., 1995a. Experimental African swine fever: apoptosis of lymphocytes and virus replication in other cells. Journal of General Virology 76 (Part 9): 2399-2405. https://doi.org/10.1099/0022-1317-76-9-2399

  • Gómez-Villamandos, J.C., Hervás, J., Méndez, A., Carrasco, L., Villeda, C.J., Sierra, M.A. and Wilkonson, P.J., 1995b. A pathological study of the perisinusoidal unit of the liver in acute African swine fever. Research in Veterinary Science 59: 146-151. https://doi.org/10.1016/0034-5288(95)90049-7

  • Gómez-Villamandos, J.C., Hervás, J., Méndez, A., Carrasco, L., Villeda, C.J., Wilkinson, P.J. and Sierra, M.A., 1995c. Pathological changes in the renal interstitial capillaries of pigs inoculated with two different strains of African swine fever virus. Journal of Comparative Pathology 112: 283-298. https://doi.org/10.1016/s0021-9975(05)80081-7

  • Gómez-Villamandos, J.C., Hervás, J., Méndez, A., Carrasco, L., Villeda, C.J., Wilkinson, P.J. and Sierra, M.A., 1995d. Ultrastructural study of the renal tubular system in acute experimental African swine fever: virus replication in glomerular mesangial cells and in the collecting ducts. Archives in Virology 140: 581-589. https://doi.org/10.1007/bf01718433

  • Gómez-Villamandos, J.C., J. Hervás, C., Moreno, L., Carrasco, M.J., Bautista, J.M., Caballero, P.J., Wilkinson, P.J. and Sierra, M.A., 1997b. Subcellular changes in the tonsils of pigs infected with acute African swine fever virus. Veterinary Research 28: 179-189.

  • Gregg, D.A., Mebus, C.A. and Schlafer, D.H., 1995. Early infection of interdigitating dendritic cells in the pig lymph node with African swine fever viruses of high and low virulence: immunohistochemical and ultrastructural studies. Journal of Veterinary Diagnostic Investigation 7: 23-30. https://doi.org/10.1177/104063879500700104

  • Greig, A., 1972. Pathogenesis of African swine fever in pigs naturally exposed to the disease. Journal of Comparative Pathology 82: 73-79. https://doi.org/10.1016/0021-9975(72)90028-x

  • Hervás, J., Gómez-Villamandos, J.C., Méndez, A., Carrasco, L., Pérez, J., Wilkinson, P.J. and Sierra, M.A., 1996. Structural and ultrastructural study of glomerular changes in African swine fever. Journal of Comparative Pathology 115: 61-75. https://doi.org/10.1016/s0021-9975(96)80028-4

  • Heuschele, W.P., 1967. Studies on the pathogenesis of African swine fever. I. Quantitative studies on the sequential development of virus in pig tissues. Archiv für die Gesamte Virusforschung 21: 349-356. https://doi.org/10.1007/bf01241735

  • Howey, E.B., O’Donnell, V., de Carvalho Ferreira, H.C., Borca, M.V. and Arzt, J., 2013. Pathogenesis of highly virulent African swine fever virus in domestic pigs exposed via intraoropharyngeal, intranasopharyngeal, and intramuscular inoculation, and by direct contact with infected pigs. Virus Research 178: 328-339. https://doi.org/10.1016/j.virusres.2013.09.024

  • Kleiboeker, S.B., 2002. Swine fever: classical swine fever and African swine fever. Veterinary Clinics of North America: Food Animal Practice 18: 431-451. https://doi.org/10.1016/s0749-0720(02)00028-2

  • Konno S, T.W., Hess WR, Heuschele WP, 1971. Liver pathology in African swine fever. Cornell Veterinarian 61: 125-150.

  • Krauthausen, E., Drommer, W., Sierra, M.A. and Jover, A., 1992. [Light and electron microscopic findings in the intestine of spontaneous and experimentally-produced African swine fever]. Deutsche Tierarztliche Wochenschrift 99: 54-59.

  • Leitão, A., Cartaxeiro, C., Coelho, R., Cruz, B., Parkhouse, R.M.E., Portugal, F.C., Vigário, J.D. and Martins, C.L.V., 2001. The non-haemadsorbing African swine fever virus isolate ASFV/NH/P68 provides a model for defining the protective anti-virus immune response. Journal of General Virology 82: 513-523. https://doi.org/10.1099/0022-1317-82-3-513

  • Moulton, J. and Coggins, L., 1968. Comparison of lesions in acute and chronic African swine fever. Cornell Veterinarian 58: 364-388.

  • Moulton, J.E., Pan, I.C., Hess, W.R., DeBoer, C.J. and Tessler, J., 1975. Pathologic features of chronic pneumonia in pigs with experimentally induced African swine fever. American Journal of Veterinary Research 36: 27-32.

  • Mozos, E., Herraez, P., Perez, J., Fernandez, A., Blanco, A., Martin, M.P. and Jover, A., 2003. Cutaneous lesions in experimental acute and subacute African swine fever: an immunohistopathological and ultrastructural study. Deutsche Tierarztliche Wochenschrift 110: 150-154.

  • Muñoz-Moreno, R., Galindo, I., Cuesta-Geijo, M., Barrado-Gil, L. and Alonso, C., 2015. Host cell targets for African swine fever virus. Virus Research 209: 118-127. https://doi.org/10.1016/j.virusres.2015.05.026

  • Oura, C.A., Powell, P.P., Anderson, E. and Parkhouse, R.M., 1998a. The pathogenesis of African swine fever in the resistant bushpig. Journal of General Virology 79: 1439-1443. https://doi.org/10.1099/0022-1317-79-6-1439

  • Oura, C.A., Powell, P.P. and Parkhouse, R.M., 1998b. African swine fever: a disease characterized by apoptosis. Journal of General Virology 79: 1427-1438. https://doi.org/10.1099/0022-1317-79-6-1427

  • Pan, I.C. and Hess, W.R., 1984. Virulence in African swine fever: its measurement and implications. American Journal of Veterinary Research 45: 361-366.

  • Penrith, M.L. and Vosloo, W., 2009. Review of African swine fever: transmission, spread and control. Journal of the South African Veterinary Association 80: 58-62. https://doi.org/10.4102/jsava.v80i2.172

  • Pérez, J., Bautista, M.J., Rodríguez, F., Wilkinson, P.J., Sierra, M.A. and Martín de las Mulas, J., 1997. Double-labelling immunohistochemical study of megakaryocytes in African swine fever. Veterinary Record 141: 386-390. https://doi.org/10.1136/vr.141.15.386

  • Pérez, J., Rodríguez, F., Fernández, A., Martín de las Mulas, J., Gómez-Villamandos, J.C. and Sierra, M.A., 1994. Detection of African swine fever virus protein VP73 in tissues of experimentally and naturally infected pigs. Journal of Veterinary Diagnostic Investigation 6: 360-365. https://doi.org/10.1177/104063879400600314

  • Petersen, H.H., Nielsen, J.P. and Heegaard, P.M., 2004. Application of acute phase protein measurements in veterinary clinical chemistry. Veterinary Research 35: 163-187. https://doi.org/10.1051/vetres:2004002

  • Plowright, W., Parker, J. and Staple, R.F., 1968. The growth of a virulent strain of African swine fever virus in domestic pigs. Journal of Hygiene 66: 117-134. https://doi.org/10.1017/s0022172400040997

  • Post, J., Weesendorp, E., Montoya, M. and Loeffen, W.L., 2017. Influence of age and dose of African swine fever virus infections on clinical outcome and blood parameters in pigs. Viral Immunology 30: 58-69. https://doi.org/10.1089/vim.2016.0121

  • Quintero, J.C., Wesley, R.D., Whyard, T.C., Gregg, D. and Mebus, C.A., 1986. In vitro and in vivo association of African swine fever virus with swine erythrocytes. American Journal of Veterinary Research 47: 1125-1131.

  • Reis, A.L., Netherton, C. and Dixon, L.K., 2017. Unraveling the armor of a killer: evasion of host defenses by African swine fever virus. Journal of Virology 91: e02338-16. https://doi.org/10.1128/jvi.02338-16

  • Rodríguez, F., Fernández, A., Martín de las Mulas, J.P., Sierra, M.A. and Jover, A., 1996a. African swine fever: morphopathology of a viral haemorrhagic disease. Veterinary Record 139: 249-254. https://doi.org/10.1136/vr.139.11.249

  • Rodríguez, F., Martín de las Mulas, J., Herráez, P., Sánchez Vizcaíno, J.M. and Fernández, A., 1996b. Immunohistopathological study of African swine fever (strain E-75)-infected bone marrow. Journal of Comparative Pathology 114: 399-406. https://doi.org/10.1016/s0021-9975(96)80015-6

  • Rodríguez, J.M., Yáñez, R.J., Almazán, F., Viñuela, E. and Rodriguez, J.F., 1993. African swine fever virus encodes a CD2 homolog responsible for the adhesion of erythrocytes to infected cells. Journal of Virology 67: 5312-5320. https://doi.org/10.1128/jvi.67.9.5312-5320.1993

  • Salguero, F.J., Ruiz-Villamor, E., Bautista, M.J., Sánchez-Cordón, P.J., Carrasco, L. and Gómez-Villamandos, J.C., 2002. Changes in macrophages in spleen and lymph nodes during acute African swine fever: expression of cytokines. Veterinary Immunology and Immunopathology 90: 11-22. https://doi.org/10.1016/s0165-2427(02)00225-8

  • Salguero, F.J., Sánchez-Cordón, P.J., Núñez, A., Fernández de Marco, M. and Gómez-Villamandos, J.C., 2005. Proinflammatory cytokines induce lymphocyte apoptosis in acute African swine fever infection. Journal of Comparative Pathology 132: 289-302. https://doi.org/10.1016/j.jcpa.2004.11.004

  • Salguero, F.J., Sánchez-Cordón, P.J., Sierra, M.A., Jover, A., Núñez, A. and Gómez-Villamandos, J.C., 2004. Apoptosis of thymocytes in experimental African swine fever virus infection. Histology and Histopathology 19: 77-84. https://doi.org/10.14670/hh-19.77

  • Sánchez, E.G. Quintas, A., Pérez-Núñez, D., Nogal, M., Barroso, S., Carrascosa Á, L. and Revilla, Y., 2012. African swine fever virus uses macropinocytosis to enter host cells. PLoS Pathogens 8: e1002754. https://doi.org/10.1371/journal.ppat.1002754

  • Sánchez-Cordón, P.J., Chapman, D., Jabbar, T., Reis, A.L., Goatley, L., Netherton, C.L., Taylor, G., Montoya, M. and Dixon, L., 2017. Different routes and doses influence protection in pigs immunised with the naturally attenuated African swine fever virus isolate OURT88/3. Antiviral Research 138: 1-8. https://doi.org/10.1016/j.antiviral.2016.11.021

  • Sánchez-Cordón, P.J., Jabbar, T., Chapman, D., Dixon, L.K. and Montoya, M., 2020a. Absence of long-term protection in domestic pigs immunized with attenuated African swine fever virus isolate OURT88/3 or BeninΔMFG correlates with increased levels of regulatory T cells and IL-10. Journal of Virology 94: e00350-20. https://doi.org/10.1128/jvi.00350-20

  • Sánchez-Cordón, P.J., Montoya, M., Reis, A.L. and Dixon, L.K., 2018. African swine fever: A re-emerging viral disease threatening the global pig industry. Veterinary Journal 233: 41-48. https://doi.org/10.1016/j.tvjl.2017.12.025

  • Sanchez-Cordon, P.J., Nunez, A., Neimanis, A., Wikstrom-Lassa, E., Montoya, M., Crooke, H. and Gavier-Widen, D., 2019. African swine fever: disease dynamics in wild boar experimentally infected with ASFV isolates belonging to genotype I and II. Viruses 11: 852. https://doi.org/10.3390/v11090852

  • Sánchez-Cordón, P.J., Romero-Trevejo, J.L., Pedrera, M., Sánchez-Vizcaíno, J.M., Bautista, M.J. and Gómez-Villamandos, J.C., 2008. Role of hepatic macrophages during the viral haemorrhagic fever induced by African Swine Fever Virus. Histology and Histopathology 23: 683-691. https://doi.org/10.14670/hh-23.683

  • Sánchez-Cordón, P.J., Vidaña, B., Dixon, L., Crooke, H. and Núñez, A., 2020b. Neuropathology and viral antigen distribution in the central nervous system of domestic pigs experimentally infected with African swine fever virus. In: Final international conference of the COST Action ASF-STOP – Understanding and combating African swine fever in Europe Brescia, Italy, 29-30 January 2020, pp. 17.

  • Sánchez-Torres, C., Gómez-Puertas, P., Gómez-del-Moral, M., Alonso, F., Escribano, J.M., Ezquerra, A. and Domínguez, J., 2003. Expression of porcine CD163 on monocytes/macrophages correlates with permissiveness to African swine fever infection. Archives of Virology 148: 2307-2323. https://doi.org/10.1007/s00705-003-0188-4

  • Sánchez-Vizcaíno, J.M., Mur, L., Gomez-Villamandos, J.C. and Carrasco, L., 2015. An update on the epidemiology and pathology of African swine fever. Journal of Comparative Pathology 152: 9-21. https://doi.org/10.1016/j.jcpa.2014.09.003

  • Schlafer, D.H. and Mebus, C.A., 1987. Abortion in sows experimentally infected with African swine fever virus: pathogenesis studies. American Journal of Veterinary Research 48: 246-254.

  • Schulz, K., Staubach, C. and Blome, S., 2017. African and classical swine fever: similarities, differences and epidemiological consequences. Veterinary Research 48: 84. https://doi.org/10.1186/s13567-017-0490-x

  • Sehl, J., Pikalo, J., Schäfer, A., Franzke, K., Pannhorst, K., Elnagar, A., Blohm, U., Blome, S. and Breithaupt, A., 2020. Comparative pathology of domestic pigs and wild boar infected with the moderately virulent African swine fever virus strain “Estonia 2014”. Pathogens 9: 662. https://doi.org/10.3390/pathogens9080662

  • Semerjyan, A.B., Tatoyan, M.R., Karalyan, N.Y., Nersisyan, N.H., Hakobyan, L.H., Arzumanyan, H.H. and Karalyan, Z.A., 2018. Cardiopathology in acute African swine fever. Annals of Parasitology 64: 253-258. https://doi.org/10.17420/ap6403.161

  • Sierra, M.A., Bernabe, A., Mozos, E., Mendez, A. and Jover, A., 1987. Ultrastructure of the liver in pigs with experimental African swine fever. Veterinary Pathology 24: 460-462. https://doi.org/10.1177/030098588702400516

  • Sierra, M.A., Carrasco, L., Gómez-Villamandos, J.C., Martin de las Mulas, J., Méndez, A. and Jover, A., 1990. Pulmonary intravascular macrophages in lungs of pigs inoculated with African swine fever virus of differing virulence. Journal of Comparative Pathology 102: 323-334. https://doi.org/10.1016/s0021-9975(08)80021-7

  • Sierra, M.A., Gomez-Villamandos, J.C., Carrasco, L., Fernandez, A., Mozos, E. and Jover, A., 1991. In vivo study of hemadsorption in African swine fever virus infected cells. Veterinary Pathology 28: 178-181. https://doi.org/10.1177/030098589102800213

  • Sierra, M.A., Quezada, M., Fernandez, A., Carrasco, L., Gomez-Villamandos, J.C., Martin de las Mulas, J. and Sanchez-Vizcaino, J.M., 1989. Experimental African swine fever: evidence of the virus in interstitial tissues of the kidney. Veterinary Pathology 26: 173-176. https://doi.org/10.1177/030098588902600211

  • Zani, L., Forth, J.H., Forth, L., Nurmoja, I., Leidenberger, S., Henke, J., Carlson, J., Breidenstein, C., Viltrop, A., Höper, D., Sauter-Louis, C., Beer, M. and Blome, S., 2018. Deletion at the 5’-end of Estonian ASFV strains associated with an attenuated phenotype. Scientific Reports 8: 6510. https://doi.org/10.1038/s41598-018-24740-1

  • Collapse
  • Expand