Aira, C., Ruiz, T., Dixon, L.K., Blome, S., Rueda, P. and Sastre, P., 2019. Bead-based multiplex assay for the simultaneous detection of antibodies to African swine fever virus and classical swine fever virus. Frontiers in Veterinary Science 6: 306: https://doi.org/10.3389/fvets.2019.00306
Arias, M., Jurado, C., Gallardo, C., Fernández‐Pinero, J. and Sánchez‐Vizcaíno, J.M., 2018. Gaps in African swine fever: analysis and priorities. Transboundary and Emerging Diseases 65 (Suppl. 1): 235-247. https://doi.org/10.1111/tbed.12695.
Beltrán-Alcrudo, D., Arias, M., Gallardo, C., Kramer, S. and Penrith, M.L., 2017. African swine fever: detection and diagnosis – A manual for veterinarians. FAO Animal Production and Health Manual No. 19. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy. Available at: http://www.fao.org/3/a-i7228e.pdf
Boinas, F.S., Hutchings, G.H., Dixon, L.K. and Wilkinson, P.J., 2004. Characterization of pathogenic and non-pathogenic African swine fever virus isolates from Ornithodoros erraticus inhabiting pig premises in Portugal. Journal General Virology 85 (Part 8): 2177-2187. 10.1099/vir.0.80058-0
Cappai S, Loi F, Coccollone A, Cocco M, Falconi C, Dettori G, Feliziani F, Sanna ML, Oggiano A, Rolesu S.,2017. Evaluation of a commercial field test to detect African swine fever. Journal of Wild Life Diseases 53: 602-606. https://doi.org/10.7589/2016-05-112
Carlson, J., Zani, L., Schwaiger, T., Nurmoja, I., Viltrop, A., Vilem, A. and Blome, S., 2017. Simplifying sampling for African swine fever surveillance: Assessment of antibody and pathogen detection from blood swabs. Transboundary and Emerging Diseases 65: e165-e172. https://doi.org/10.1111/tbed.12706.
Carrascosa, A.L., Bustos, M.J., and de Leon, P., 2011. Methods for growing and titrating African swine fever virus: field and laboratory samples. Current Protocols in Cell Biology 53: 26.14.1-26.14.25. https://doi.org/10.1002/0471143030.cb2614s53
Cubillos, C., Gómez-Sebastian, S., Moreno, N., Nuñez, MC., Mulumba-Mfumu, L.K., Quembo, C.J., Heath, L., Etter, E.M., Jori, F., Escribano, J.M. and Blanco, E., 2013. African swine fever virus serodiagnosis: a general review with a focus on the analyses of African serum samples. Virus Research 173: 159-167. https://doi.org/10.1016/j.virusres.2012.10.021
Davies, K., Goatley, L.C., Guinat, C., Netherton, C.L., Gubbins, S., Dixon, L.K. and Reis, A.L., 2017. Survival of African swine fever virus in excretions from pigs experimentally infected with the Georgia 2007/1 isolate. Transboundary and Emerging Diseases 64: 425-431. https://doi.org/10.1111/tbed.12381
De Carvalho Ferreira, H.C., Weesendorp, E., Quak, S., Stegeman, J.A. and Loeffen, W.L., 2014. Suitability of faeces and tissue samples as a basis for non-invasive sampling for African swine fever in wild boar. Veterinary Microbiology 172: 449-454. https://doi.org/10.1016/j.vetmic.2014.06.016
Dixon, L.K., Stahl, K., Jori, F., Vial, L. and Pfeiffer, D.U., 2020. African Swine Fever Epidemiology and Control. Annual Review of Animal Biosciences 8: 221-246. https://doi.org/10.1146/annurev-animal-021419-083741
European Commission (EC), 2002. Council Directive 2002/60/EC of 27 June 2002 laying down specific provisions for the control of African swine fever and amending Directive 92/119/EEC as regards Teschen disease and African swine fever. Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:02002L0060-20080903
European Commission (EC), 2003. African swine fever diagnostic manual (notified under document number C (2003) 1696) 2003/422/EC). Available at https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32003D0422&from=EN
European Food Safety Authority (EFSA) Panel on Animal Health and Welfare, 2010. Scientific opinion on African swine fever. EFSA Journal 8: 149. https://doi.org/10.2903/j.efsa.2010.1556
Fernández-Pinero, J., Gallardo, C., Elizalde, M., Robles, A., Gomez, C., Bishop, R., Heath, L., Couacy-Hymann, E., Fasina, F.O., Pelayo, V., Soler, A. and Arias, M., 2013. Molecular diagnosis of African swine fever by a new real-time PCR using universal probe library. Transboundary and Emerging Diseases 60: 48-58. https://doi.org/10.1111/j.1865-1682.2012.01317.x
Gallardo, C., Fernández-Pinero, J. and Arias, M., 2019b. African swine fever (ASF) diagnosis, an essential tool in the epidemiological investigation. Virus Research 271: 197676. https://doi.org/10.1016/j.virusres.2019.197676
Gallardo, C., Nieto, R., Soler, A., Pelayo, V., Fernández-Pinero, J., Markowska-Daniel, I., Pridotkas, G., Nurmoja, I., Granta, R., Simón, A., Pérez, C., Martín, E., Fernández-Pacheco, P. and Arias, M., 2015. Assessment of African swine fever diagnostic techniques as a response to the epidemic outbreaks in Eastern European Union countries: how to improve surveillance and control programs. Journal of Clinical Microbiology 53: 2555-2565. https://doi.org/10.1128/JCM.00857-15
Gallardo, C., Soler, A., Rodze, I., Nieto, R., Cano-Gómez, C., Fernandez-Pinero, J. and Arias, M., 2019a. Attenuated and non-haemadsorbing (non-HAD) genotype II African swine fever virus (ASFV) isolated in Europe, Latvia 2017. Transboundary and Emerging Diseases 66: 1399-1404. 10.1111/tbed.13132
Gaur, A., Umapathy, G., Vasudevan, K., Sontakke, S., Rao, S., Goel, S., Kumar, D., Gupta, B.J., Singh, D.N. and Kumar, A., 2017. Manual for biological sample collection and preservation for genetic, reproductive and disease analyses. New Delhi: Central Zoo Authority and Laboratory for the Conservation of Endangered Species (LaCONES) CSIR – Centre for Cellular and Molecular Biology. Available at: http://cza.nic.in/uploads/documents/publications/english/Fina%20A5%20Manual%20(1)%20(1).pdf
Herrman, T., 2001. Sampling: procedures for feed. Kansas State University Agricultural Experiment Station and Cooperative Extension Service. MF-2036. Available at: http://www.ksre.k-state.edu/bookstore/pubs/mf2036.pdf
Hurst, C.J. and Reynolds, K.A., 2007. Sampling viruses from soil. Available at https://www.asmscience.org/content/book/10.1128/9781555815882.ch50
James, H.E., Ebert, K., Mcgonigle, R., Reid, S.M., Boonham, N., Tomlinson, J.A. and King, D.P., 2010. Detection of African swine fever virus by loop-mediated isothermal amplification. Journal of Virological Methods 164: 68-74. https://doi.org/10.1016/j.jviromet.2009.11.034
Julian, T.R., Tamayo, F.J., Leckie, J.O. and Boehm, A.B., 2011. Comparison of surface sampling methods for virus recovery from fomites. Applied and Environmental Microbiology 77: 6918-6925. https://doi.org/10.1128/aem.05709-11
Khomenko, S., Alexandrov, T. and Sumption, K., 2013. Options for non-invasive collection of saliva from wild ungulates for disease surveillance. FAO EMPRES-Animal Health 360° Bulletin 42: 15-17. Available at: http://babh.government.bg/userfiles/files/ZJ/Publications/Khomenko%20Alexandrov%202013%20NI%20surv%202013.pdf
Kim, H.-J., Lee, M.-J., Lee, S.-K., Kim, D.-Y., Seo, S.-J., Kang, H.-E. and Nam, H.-M., 2019. African swine fever virus in pork brought into South Korea by travelers from China, August 2018. Emerging Infectious Diseases 25: 1231-1233. https://doi.org/10.3201/eid2506.181684
King, D.P., Reid, S.M., Hutchings, G.H., Grierson, S.S., Wilkinson, P.J., Dixon, L.K., Bastos, A.D. and Drew, T.W., 2003. Development of a TaqMan PCR assay with internal amplification control for the detection of African swine fever virus. Journal of Virological Methods 107: 53-61. https://doi.org/10.1016/S0166-0934(02)00189-1
Kumar, Y., Bansal, S. and Jaiswal, P., 2017. Loop-mediated isothermal amplification (LAMP): a rapid and sensitive tool for quality assessment of meat products. Comprehensive Reviews in Food Science and Food Safety 16: 1359-1378. https://doi.org/10.1111/1541-4337.12309
Leitão, A., Cartaxeiro, C., Coelho, R., Cruz, B., Parkhouse, R.M., Portugal, F., Vigário, J.D. and Martins, C.L., 2001. The non-haemadsorbing African swine fever virus isolate ASFV/NH/P68 provides a model for defining the protective anti-virus immune response. Journal of General Virology 82: 513-523. https://doi.org/10.1099/0022-1317-82-3-513
MacLachlan, N.J. and Dubovi, E.J., 2017. Asfarviridae and Iridoviridae. In: Fenner’s Veterinary virology (5th ed.). Academic Press, Cambridge, MA, USA, pp. 175-188, https://doi.org/10.1016/B978-0-12-800946-8.00008-8
Majumdar, T.K. and Howard, D.R., 2011. The use of dried blood spots for concentration assessment in pharmacokinetic evaluations. In: Bonate P. and Howard D. (eds.) Pharmacokinetics in drug development. Springer, Boston, MA, USA, pp. 91-114. https://doi.org/10.1007/978-1-4419-7937-7_4
Männistö, H.E., 2018. Collection of oral fluid samples from wild boar in the field conditions to detect African swine fever virus (ASFV). Master’s thesis, Estonian University of Life Sciences, Tartu, Estonia. Available at: https://dspace.emu.ee/xmlui/bitstream/handle/10492/4270/Hanna_M%C3%A4nnist%C3%B6_2018LA_VM.pdf?sequence=1&isAllowed=y
Mazur-Panasiuk, N., Żmudzki, J. and Woźniakowski, G., 2019. African swine fever virus – persistence in different environmental conditions and the possibility of its indirect transmission. Journal of Veterinary Research 63: 303-310. https://doi.org/10.2478/jvetres-2019-0058
Mebus, C., Arias, M., Pineda, J., Tapiador, J., House, C. and Sánchez-Vizcaíno, J., 1997. Survival of several porcine viruses in different Spanish dry-cured meat products. Food Chemistry 59: 555-559. https://doi.org/10.1016/s0308-8146(97)00006-x
Mebus, C., House, C., Gonzalvo, F., Pineda, J., Tapiador, J., Pire, J. and Sanchez-Vizcaino, J., 1993. Survival of foot-and-mouth disease, African swine fever, and hog cholera viruses in Spanish serrano cured hams and Iberian cured hams, shoulders and loins. Food Microbiology 10: 133-143. https://doi.org/10.1006/fmic.1993.1014
Menegat, M.B., Goodband, R.D., DeRouchey, J.M., Tokach, M.D., Woodworth, J.C. and Dritz, S.S., 2019. Kansas State University swine nutrition guide: feed sampling and analysis. Available at: https://www.asi.k-state.edu/research-and-extension/swine/swinenutritionguide/pdf/KSU%20Feed%20Sampling%20and%20Analysis%20fact%20sheet.pdf
Mouchantat, S., Haas, B., Böhle, W., Globig, A., Lange, E., Mettenleiter, T.C. and Depner, K., 2014. Proof of principle: non-invasive sampling for early detection of foot-and-mouth disease virus infection in wild boar using a rope-in-a-bait sampling technique. Veterinary Microbiology 172: 329-333. https://doi.org/10.1016/j.vetmic.2014.05.021
Nagamine, K., Hase, T. and Notomi, T., 2002. Accelerated reaction by loop-mediated isothermal amplification using loop primers. Molecular and Cellular Probes 16: 223-229. https://doi.org/10.1006/mcpr.2002.0415
Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T.,Watanabe, K., Amino, N. and Hase, T., 2000. Loop-mediated isothermal amplification of DNA. Nucleic Acids Research 28: e63. https://doi.org/10.1093/nar/28.12.e63
OIE (World Organisation for Animal Health), 2018. Transport of biological materials. In: Manual of diagnostic tests and vaccines for terrestrial animals 2018, Vol 1, Chapter 1.1.3 Available at: https://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/1.01.03_TRANSPORT.pdf
OIE (World Organisation for Animal Health), 2019. African swine fever. In: Manual of diagnostic tests and vaccines for terrestrial animals 2019; Vol 2, Chapter 3.8.1. Available at: http://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/3.08.01_ASF.pdf
Oura, C.A., Edwards, L. and Batten, C.A., 2013. Virological diagnosis of African swine fever--comparative study of available tests. Virus Research 173: 150-158. https://doi.org/10.1016/j.virusres.2012.10.022
Penrith, M.L., Thomson, G.R., Bastos, A.D.S., Phiri, O.C., Lubisi, B.A., Du Plessis, E.C., Macome, F., Pinto, F., Botha, B. and Esterhuysen, J.J., 2004. An investigation into natural resistance to African swine fever in domestic pigs from an endemic area in southern Africa. Revue Scientifique et Technique 23: 965-977. https://doi.org/10.20506/rst.23.3.1533
Petrini, S., Feliziani, F., Casciari, C., Giammarioli, M., Torresi, C. and Mia, G.M.D., 2019. Survival of African swine fever virus (ASFV) in various traditional Italian dry-cured meat products. Preventive Veterinary Medicine 162: 126-130. https://doi.org/10.1016/j.prevetmed.2018.11.013
Randriamparany, T., Kouakou, K.V., Michaud, V., Fernandez-Pinero, J., Gallardo, C., Le Potier, M.F., Rabenarivahiny, R., Couacy-Hymann, E., Raherimandimby, M. and Albina, E., 2016. African swine fever diagnosis adapted to tropical conditions by the use of dried-blood filter papers. Transboundary and Emerging Diseases 63: 379-388. https://doi.org/10.1111/tbed.12295
Rowlands, R.J., Michaud, V., Heath, L., Hutchings, G., Oura, C., Vosloo, W. and Dixon, L.K., 2008. African swine fever virus isolate, Georgia, 2007. Emerging Infectious Diseases 14: 1870-1874. https://doi.org/10.3201/eid1412.080591
Sánchez-Cordón, P.J., Jabbar, T., Berrezaie, M., Chapman, D., Reis, A., Sastre, P., Rueda, P., Goatley, L. and Dixon, L.K., 2018. Evaluation of protection induced by immunisation of domestic pigs with deletion mutant African swine fever virus BeninΔMGF by different doses and routes. Vaccine 36: 707-715. https://doi.org/10.1016/j.vaccine.2017.12.030.
Sánchez-Vizcaíno, J.M., Laddomada, A. and Arias, M.L., 2019. African swine fever virus. In: Zimmerman, J.J., Karriker, L.A., Ramirez, A., Schwartz, K.J., Stevenson, G.W. and Zhang, J. (eds.) Diseases of swine (11th ed.). John Wiley and Sons Inc., Hoboken, NJ, USA, pp. 443-452. https://doi.org/10.1002/9781119350927.ch25
Sastre, P., Gallardo, C., Monedero, A., Ruiz, T., Arias, M., Sanz, A. and Rueda, P., 2016a. Development of a novel lateral flow assay for detection of African swine fever in blood. BMC Veterinary Research 12: 206. https://doi.org/10.1186/s12917-016-0831-4.
Sastre, P., Pérez, T., Costa, S., Yang, X., Räber, A., Blome, S., Goller, K.V., Gallardo, C., Tapia, I., García, J., Sanz, A. and Rueda, P., 2016b. Development of a duplex lateral flow assay for simultaneous detection of antibodies against African and classical swine fever viruses. Journal of Veterinary Diagnostic Investigation 28: 543-549. https://doi.org/10.1177/1040638716654942.
Schulz, K., Staubach, C., Blome, S., Nurmoja, I., Viltrop, A., Conraths, FJ., Kristian, M. and Sauter-Louis, C., 2020. How to demonstrate freedom from African swine fever in wild boar-Estonia as an example. Vaccines 8: 336 https://dx.doi.org/10.3390%2Fvaccines8020336
Sindryakova, I., Morgunov, Y., Chichikin, A., Gazaev, I., Kudryashov, D. and Tsybanov, S., 2016. The influence of temperature on the Russian isolate of African swine fever virus in pork products and feed with extrapolation to natural conditions. Selskokhozyaistvennaya Biologiya 51: 467-474. https://doi.org/10.15389/agrobiology.2016.4.467eng
Tignon, M., Gallardo, C., Iscaro, C., Hutet, E., Van der Stede, Y., Kolbasov, D., De Mia, G.M., Le Potier, M.F., Bishop, R.P., Arias, M. and Koenen, F., 2011. Development and inter-laboratory validation study of an improved new real-time PCR assay with internal control for detection and laboratory diagnosis of African swine fever virus. Journal of Virological Methods 178: 161-170. https://doi.org/10.1016/j.jviromet.2011.09.007
United Nations, 2019a. Recommendations on the transport of dangerous goods. Model regulations. Volume I. Available at: https://www.unece.org/fileadmin/DAM/trans/danger/publi/unrec/rev21/ST-SG-AC10-1r21e_Vol1_WEB.pdf
United Nations, 2019b. Recommendations on the transport of dangerous goods. Model regulations. Volume II. Available at: https://www.unece.org/fileadmin/DAM/trans/danger/publi/unrec/rev21/ST-SG-AC10-1r21e_Vol2_WEB.pdf
Wang, D., Yu, J., Wang, Y., Zhang, M., Li, P., Liu, M. and Liu, Y., 2020. Development of a real-time loop-mediated isothermal amplification (LAMP) assay and visual LAMP assay for detection of African swine fever virus (ASFV). Journal of Virological Methods 276: 113775. https://doi.org/10.1016/j.jviromet.2019.113775
Wang, W.-H., Lin, C.-Y., Ishcol, M.R.C., Urbina, A.N., Assavalapsakul, W., Thitithanyanont, A. and Wang, S.-F., 2019. Detection of African swine fever virus in pork products brought to Taiwan by travellers. Emerging Microbes and Infections 8: 1000-1002. https://doi.org/10.1080/22221751.2019.1636615