5. Methods for African swine fever diagnosis in clinical and environmental samples

In: Understanding and combatting African Swine Fever
Authors:
C. Gallardo European Union Reference Laboratory for African Swine Fever (EURL), Centro de Investigación en Sanidad Animal, (INIA-CISA), Valdeolmos, 28130 Madrid, Spain.

Search for other papers by C. Gallardo in
Current site
Google Scholar
PubMed
Close
,
P. Sastre Eurofins INGENASA, 28037 Madrid, Spain.

Search for other papers by P. Sastre in
Current site
Google Scholar
PubMed
Close
,
P. Rueda Eurofins INGENASA, 28037 Madrid, Spain.

Search for other papers by P. Rueda in
Current site
Google Scholar
PubMed
Close
,
A.P. Gerilovych National Scientific Center ‘Institute of Experimental and Clinical Veterinary Medicine’ (NSC IECVM), 61023 Kharkiv, Ukraine.

Search for other papers by A.P. Gerilovych in
Current site
Google Scholar
PubMed
Close
,
M. Kit National Scientific Center ‘Institute of Experimental and Clinical Veterinary Medicine’ (NSC IECVM), 61023 Kharkiv, Ukraine.

Search for other papers by M. Kit in
Current site
Google Scholar
PubMed
Close
,
I. Nurmoja Estonian Veterinary and Food Laboratory (VFL), Kreutzwaldi 30, 51006 Tartu, Estonia.

Search for other papers by I. Nurmoja in
Current site
Google Scholar
PubMed
Close
, and
M.F. Le Potier French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France.

Search for other papers by M.F. Le Potier in
Current site
Google Scholar
PubMed
Close
Open Access

Several infectious diseases may manifest similar clinical signs to African swine fever (ASF). Differential diagnosis can only be confirmed by laboratory testing. The combination of at least two different methods of laboratory testing to confirm an ASF suspicion is recommended, e.g. detection of viral genome and detection of antibodies in suspected animals. Fully validated methods for detection of the ASF virus (ASFV) genome by PCR are available and some of them are commercialised. They are easy to use in diagnostic laboratories, and suitable for both active and passive surveillance. However, the virus isolation (VI) required for further characterisation of a viral strain requires specific skills and a highly-equipped laboratory. Both methods (PCR, VI) can be applied to assess the contamination of the environment or pork products, pig feed, etc. Fully validated methods for the detection of antibodies to ASFV by ELISA are also commercially available and easy to run. However, for serological test confirmation, the most recommended method (IPT) needs the same equipment as for VI and is mainly run only in national reference laboratories. Pen-side tests have been developed for rapid virus or antibody detection at the herd level. They would be sufficient for viral screening among susceptible animals, although their performances are currently under evaluation.

  • Aira, C., Ruiz, T., Dixon, L.K., Blome, S., Rueda, P. and Sastre, P., 2019. Bead-based multiplex assay for the simultaneous detection of antibodies to African swine fever virus and classical swine fever virus. Frontiers in Veterinary Science 6: 306: https://doi.org/10.3389/fvets.2019.00306

  • Arias, M., Jurado, C., Gallardo, C., Fernández‐Pinero, J. and Sánchez‐Vizcaíno, J.M., 2018. Gaps in African swine fever: analysis and priorities. Transboundary and Emerging Diseases 65 (Suppl. 1): 235-247. https://doi.org/10.1111/tbed.12695.

  • Beltrán-Alcrudo, D., Arias, M., Gallardo, C., Kramer, S. and Penrith, M.L., 2017. African swine fever: detection and diagnosis – A manual for veterinarians. FAO Animal Production and Health Manual No. 19. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy. Available at: http://www.fao.org/3/a-i7228e.pdf

  • Boinas, F.S., Hutchings, G.H., Dixon, L.K. and Wilkinson, P.J., 2004. Characterization of pathogenic and non-pathogenic African swine fever virus isolates from Ornithodoros erraticus inhabiting pig premises in Portugal. Journal General Virology 85 (Part 8): 2177-2187. 10.1099/vir.0.80058-0

  • Cappai S, Loi F, Coccollone A, Cocco M, Falconi C, Dettori G, Feliziani F, Sanna ML, Oggiano A, Rolesu S.,2017. Evaluation of a commercial field test to detect African swine fever. Journal of Wild Life Diseases 53: 602-606. https://doi.org/10.7589/2016-05-112

  • Carlson, J., Zani, L., Schwaiger, T., Nurmoja, I., Viltrop, A., Vilem, A. and Blome, S., 2017. Simplifying sampling for African swine fever surveillance: Assessment of antibody and pathogen detection from blood swabs. Transboundary and Emerging Diseases 65: e165-e172. https://doi.org/10.1111/tbed.12706.

  • Carrascosa, A.L., Bustos, M.J., and de Leon, P., 2011. Methods for growing and titrating African swine fever virus: field and laboratory samples. Current Protocols in Cell Biology 53: 26.14.1-26.14.25. https://doi.org/10.1002/0471143030.cb2614s53

  • Cubillos, C., Gómez-Sebastian, S., Moreno, N., Nuñez, MC., Mulumba-Mfumu, L.K., Quembo, C.J., Heath, L., Etter, E.M., Jori, F., Escribano, J.M. and Blanco, E., 2013. African swine fever virus serodiagnosis: a general review with a focus on the analyses of African serum samples. Virus Research 173: 159-167. https://doi.org/10.1016/j.virusres.2012.10.021

  • Davies, K., Goatley, L.C., Guinat, C., Netherton, C.L., Gubbins, S., Dixon, L.K. and Reis, A.L., 2017. Survival of African swine fever virus in excretions from pigs experimentally infected with the Georgia 2007/1 isolate. Transboundary and Emerging Diseases 64: 425-431. https://doi.org/10.1111/tbed.12381

  • De Carvalho Ferreira, H.C., Weesendorp, E., Quak, S., Stegeman, J.A. and Loeffen, W.L., 2014. Suitability of faeces and tissue samples as a basis for non-invasive sampling for African swine fever in wild boar. Veterinary Microbiology 172: 449-454. https://doi.org/10.1016/j.vetmic.2014.06.016

  • Dixon, L.K., Stahl, K., Jori, F., Vial, L. and Pfeiffer, D.U., 2020. African Swine Fever Epidemiology and Control. Annual Review of Animal Biosciences 8: 221-246. https://doi.org/10.1146/annurev-animal-021419-083741

  • European Commission (EC), 2002. Council Directive 2002/60/EC of 27 June 2002 laying down specific provisions for the control of African swine fever and amending Directive 92/119/EEC as regards Teschen disease and African swine fever. Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:02002L0060-20080903

  • European Commission (EC), 2003. African swine fever diagnostic manual (notified under document number C (2003) 1696) 2003/422/EC). Available at https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32003D0422&from=EN

  • European Food Safety Authority (EFSA) Panel on Animal Health and Welfare, 2010. Scientific opinion on African swine fever. EFSA Journal 8: 149. https://doi.org/10.2903/j.efsa.2010.1556

  • Fernández-Pinero, J., Gallardo, C., Elizalde, M., Robles, A., Gomez, C., Bishop, R., Heath, L., Couacy-Hymann, E., Fasina, F.O., Pelayo, V., Soler, A. and Arias, M., 2013. Molecular diagnosis of African swine fever by a new real-time PCR using universal probe library. Transboundary and Emerging Diseases 60: 48-58. https://doi.org/10.1111/j.1865-1682.2012.01317.x

  • Gallardo, C., Fernández-Pinero, J. and Arias, M., 2019b. African swine fever (ASF) diagnosis, an essential tool in the epidemiological investigation. Virus Research 271: 197676. https://doi.org/10.1016/j.virusres.2019.197676

  • Gallardo, C., Nieto, R., Soler, A., Pelayo, V., Fernández-Pinero, J., Markowska-Daniel, I., Pridotkas, G., Nurmoja, I., Granta, R., Simón, A., Pérez, C., Martín, E., Fernández-Pacheco, P. and Arias, M., 2015. Assessment of African swine fever diagnostic techniques as a response to the epidemic outbreaks in Eastern European Union countries: how to improve surveillance and control programs. Journal of Clinical Microbiology 53: 2555-2565. https://doi.org/10.1128/JCM.00857-15

  • Gallardo, C., Soler, A., Rodze, I., Nieto, R., Cano-Gómez, C., Fernandez-Pinero, J. and Arias, M., 2019a. Attenuated and non-haemadsorbing (non-HAD) genotype II African swine fever virus (ASFV) isolated in Europe, Latvia 2017. Transboundary and Emerging Diseases 66: 1399-1404. 10.1111/tbed.13132

  • Gaur, A., Umapathy, G., Vasudevan, K., Sontakke, S., Rao, S., Goel, S., Kumar, D., Gupta, B.J., Singh, D.N. and Kumar, A., 2017. Manual for biological sample collection and preservation for genetic, reproductive and disease analyses. New Delhi: Central Zoo Authority and Laboratory for the Conservation of Endangered Species (LaCONES) CSIR – Centre for Cellular and Molecular Biology. Available at: http://cza.nic.in/uploads/documents/publications/english/Fina%20A5%20Manual%20(1)%20(1).pdf

  • Herrman, T., 2001. Sampling: procedures for feed. Kansas State University Agricultural Experiment Station and Cooperative Extension Service. MF-2036. Available at: http://www.ksre.k-state.edu/bookstore/pubs/mf2036.pdf

  • Hurst, C.J. and Reynolds, K.A., 2007. Sampling viruses from soil. Available at https://www.asmscience.org/content/book/10.1128/9781555815882.ch50

  • James, H.E., Ebert, K., Mcgonigle, R., Reid, S.M., Boonham, N., Tomlinson, J.A. and King, D.P., 2010. Detection of African swine fever virus by loop-mediated isothermal amplification. Journal of Virological Methods 164: 68-74. https://doi.org/10.1016/j.jviromet.2009.11.034

  • Julian, T.R., Tamayo, F.J., Leckie, J.O. and Boehm, A.B., 2011. Comparison of surface sampling methods for virus recovery from fomites. Applied and Environmental Microbiology 77: 6918-6925. https://doi.org/10.1128/aem.05709-11

  • Khomenko, S., Alexandrov, T. and Sumption, K., 2013. Options for non-invasive collection of saliva from wild ungulates for disease surveillance. FAO EMPRES-Animal Health 360° Bulletin 42: 15-17. Available at: http://babh.government.bg/userfiles/files/ZJ/Publications/Khomenko%20Alexandrov%202013%20NI%20surv%202013.pdf

  • Kim, H.-J., Lee, M.-J., Lee, S.-K., Kim, D.-Y., Seo, S.-J., Kang, H.-E. and Nam, H.-M., 2019. African swine fever virus in pork brought into South Korea by travelers from China, August 2018. Emerging Infectious Diseases 25: 1231-1233. https://doi.org/10.3201/eid2506.181684

  • King, D.P., Reid, S.M., Hutchings, G.H., Grierson, S.S., Wilkinson, P.J., Dixon, L.K., Bastos, A.D. and Drew, T.W., 2003. Development of a TaqMan PCR assay with internal amplification control for the detection of African swine fever virus. Journal of Virological Methods 107: 53-61. https://doi.org/10.1016/S0166-0934(02)00189-1

  • Kumar, Y., Bansal, S. and Jaiswal, P., 2017. Loop-mediated isothermal amplification (LAMP): a rapid and sensitive tool for quality assessment of meat products. Comprehensive Reviews in Food Science and Food Safety 16: 1359-1378. https://doi.org/10.1111/1541-4337.12309

  • Leitão, A., Cartaxeiro, C., Coelho, R., Cruz, B., Parkhouse, R.M., Portugal, F., Vigário, J.D. and Martins, C.L., 2001. The non-haemadsorbing African swine fever virus isolate ASFV/NH/P68 provides a model for defining the protective anti-virus immune response. Journal of General Virology 82: 513-523. https://doi.org/10.1099/0022-1317-82-3-513

  • MacLachlan, N.J. and Dubovi, E.J., 2017. Asfarviridae and Iridoviridae. In: Fenner’s Veterinary virology (5th ed.). Academic Press, Cambridge, MA, USA, pp. 175-188, https://doi.org/10.1016/B978-0-12-800946-8.00008-8

  • Majumdar, T.K. and Howard, D.R., 2011. The use of dried blood spots for concentration assessment in pharmacokinetic evaluations. In: Bonate P. and Howard D. (eds.) Pharmacokinetics in drug development. Springer, Boston, MA, USA, pp. 91-114. https://doi.org/10.1007/978-1-4419-7937-7_4

  • Männistö, H.E., 2018. Collection of oral fluid samples from wild boar in the field conditions to detect African swine fever virus (ASFV). Master’s thesis, Estonian University of Life Sciences, Tartu, Estonia. Available at: https://dspace.emu.ee/xmlui/bitstream/handle/10492/4270/Hanna_M%C3%A4nnist%C3%B6_2018LA_VM.pdf?sequence=1&isAllowed=y

  • Mazur-Panasiuk, N., Żmudzki, J. and Woźniakowski, G., 2019. African swine fever virus – persistence in different environmental conditions and the possibility of its indirect transmission. Journal of Veterinary Research 63: 303-310. https://doi.org/10.2478/jvetres-2019-0058

  • Mebus, C., Arias, M., Pineda, J., Tapiador, J., House, C. and Sánchez-Vizcaíno, J., 1997. Survival of several porcine viruses in different Spanish dry-cured meat products. Food Chemistry 59: 555-559. https://doi.org/10.1016/s0308-8146(97)00006-x

  • Mebus, C., House, C., Gonzalvo, F., Pineda, J., Tapiador, J., Pire, J. and Sanchez-Vizcaino, J., 1993. Survival of foot-and-mouth disease, African swine fever, and hog cholera viruses in Spanish serrano cured hams and Iberian cured hams, shoulders and loins. Food Microbiology 10: 133-143. https://doi.org/10.1006/fmic.1993.1014

  • Menegat, M.B., Goodband, R.D., DeRouchey, J.M., Tokach, M.D., Woodworth, J.C. and Dritz, S.S., 2019. Kansas State University swine nutrition guide: feed sampling and analysis. Available at: https://www.asi.k-state.edu/research-and-extension/swine/swinenutritionguide/pdf/KSU%20Feed%20Sampling%20and%20Analysis%20fact%20sheet.pdf

  • Mouchantat, S., Haas, B., Böhle, W., Globig, A., Lange, E., Mettenleiter, T.C. and Depner, K., 2014. Proof of principle: non-invasive sampling for early detection of foot-and-mouth disease virus infection in wild boar using a rope-in-a-bait sampling technique. Veterinary Microbiology 172: 329-333. https://doi.org/10.1016/j.vetmic.2014.05.021

  • Nagamine, K., Hase, T. and Notomi, T., 2002. Accelerated reaction by loop-mediated isothermal amplification using loop primers. Molecular and Cellular Probes 16: 223-229. https://doi.org/10.1006/mcpr.2002.0415

  • Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T.,Watanabe, K., Amino, N. and Hase, T., 2000. Loop-mediated isothermal amplification of DNA. Nucleic Acids Research 28: e63. https://doi.org/10.1093/nar/28.12.e63

  • OIE (World Organisation for Animal Health), 2018. Transport of biological materials. In: Manual of diagnostic tests and vaccines for terrestrial animals 2018, Vol 1, Chapter 1.1.3 Available at: https://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/1.01.03_TRANSPORT.pdf

  • OIE (World Organisation for Animal Health), 2019. African swine fever. In: Manual of diagnostic tests and vaccines for terrestrial animals 2019; Vol 2, Chapter 3.8.1. Available at: http://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/3.08.01_ASF.pdf

  • Oura, C.A., Edwards, L. and Batten, C.A., 2013. Virological diagnosis of African swine fever--comparative study of available tests. Virus Research 173: 150-158. https://doi.org/10.1016/j.virusres.2012.10.022

  • Penrith, M.L., Thomson, G.R., Bastos, A.D.S., Phiri, O.C., Lubisi, B.A., Du Plessis, E.C., Macome, F., Pinto, F., Botha, B. and Esterhuysen, J.J., 2004. An investigation into natural resistance to African swine fever in domestic pigs from an endemic area in southern Africa. Revue Scientifique et Technique 23: 965-977. https://doi.org/10.20506/rst.23.3.1533

  • Petrini, S., Feliziani, F., Casciari, C., Giammarioli, M., Torresi, C. and Mia, G.M.D., 2019. Survival of African swine fever virus (ASFV) in various traditional Italian dry-cured meat products. Preventive Veterinary Medicine 162: 126-130. https://doi.org/10.1016/j.prevetmed.2018.11.013

  • Randriamparany, T., Kouakou, K.V., Michaud, V., Fernandez-Pinero, J., Gallardo, C., Le Potier, M.F., Rabenarivahiny, R., Couacy-Hymann, E., Raherimandimby, M. and Albina, E., 2016. African swine fever diagnosis adapted to tropical conditions by the use of dried-blood filter papers. Transboundary and Emerging Diseases 63: 379-388. https://doi.org/10.1111/tbed.12295

  • Rowlands, R.J., Michaud, V., Heath, L., Hutchings, G., Oura, C., Vosloo, W. and Dixon, L.K., 2008. African swine fever virus isolate, Georgia, 2007. Emerging Infectious Diseases 14: 1870-1874. https://doi.org/10.3201/eid1412.080591

  • Sánchez-Cordón, P.J., Jabbar, T., Berrezaie, M., Chapman, D., Reis, A., Sastre, P., Rueda, P., Goatley, L. and Dixon, L.K., 2018. Evaluation of protection induced by immunisation of domestic pigs with deletion mutant African swine fever virus BeninΔMGF by different doses and routes. Vaccine 36: 707-715. https://doi.org/10.1016/j.vaccine.2017.12.030.

  • Sánchez-Vizcaíno, J.M., Laddomada, A. and Arias, M.L., 2019. African swine fever virus. In: Zimmerman, J.J., Karriker, L.A., Ramirez, A., Schwartz, K.J., Stevenson, G.W. and Zhang, J. (eds.) Diseases of swine (11th ed.). John Wiley and Sons Inc., Hoboken, NJ, USA, pp. 443-452. https://doi.org/10.1002/9781119350927.ch25

  • Sastre, P., Gallardo, C., Monedero, A., Ruiz, T., Arias, M., Sanz, A. and Rueda, P., 2016a. Development of a novel lateral flow assay for detection of African swine fever in blood. BMC Veterinary Research 12: 206. https://doi.org/10.1186/s12917-016-0831-4.

  • Sastre, P., Pérez, T., Costa, S., Yang, X., Räber, A., Blome, S., Goller, K.V., Gallardo, C., Tapia, I., García, J., Sanz, A. and Rueda, P., 2016b. Development of a duplex lateral flow assay for simultaneous detection of antibodies against African and classical swine fever viruses. Journal of Veterinary Diagnostic Investigation 28: 543-549. https://doi.org/10.1177/1040638716654942.

  • Schulz, K., Staubach, C., Blome, S., Nurmoja, I., Viltrop, A., Conraths, FJ., Kristian, M. and Sauter-Louis, C., 2020. How to demonstrate freedom from African swine fever in wild boar-Estonia as an example. Vaccines 8: 336 https://dx.doi.org/10.3390%2Fvaccines8020336

  • Sindryakova, I., Morgunov, Y., Chichikin, A., Gazaev, I., Kudryashov, D. and Tsybanov, S., 2016. The influence of temperature on the Russian isolate of African swine fever virus in pork products and feed with extrapolation to natural conditions. Selskokhozyaistvennaya Biologiya 51: 467-474. https://doi.org/10.15389/agrobiology.2016.4.467eng

  • Tignon, M., Gallardo, C., Iscaro, C., Hutet, E., Van der Stede, Y., Kolbasov, D., De Mia, G.M., Le Potier, M.F., Bishop, R.P., Arias, M. and Koenen, F., 2011. Development and inter-laboratory validation study of an improved new real-time PCR assay with internal control for detection and laboratory diagnosis of African swine fever virus. Journal of Virological Methods 178: 161-170. https://doi.org/10.1016/j.jviromet.2011.09.007

  • United Nations, 2019a. Recommendations on the transport of dangerous goods. Model regulations. Volume I. Available at: https://www.unece.org/fileadmin/DAM/trans/danger/publi/unrec/rev21/ST-SG-AC10-1r21e_Vol1_WEB.pdf

  • United Nations, 2019b. Recommendations on the transport of dangerous goods. Model regulations. Volume II. Available at: https://www.unece.org/fileadmin/DAM/trans/danger/publi/unrec/rev21/ST-SG-AC10-1r21e_Vol2_WEB.pdf

  • Wang, D., Yu, J., Wang, Y., Zhang, M., Li, P., Liu, M. and Liu, Y., 2020. Development of a real-time loop-mediated isothermal amplification (LAMP) assay and visual LAMP assay for detection of African swine fever virus (ASFV). Journal of Virological Methods 276: 113775. https://doi.org/10.1016/j.jviromet.2019.113775

  • Wang, W.-H., Lin, C.-Y., Ishcol, M.R.C., Urbina, A.N., Assavalapsakul, W., Thitithanyanont, A. and Wang, S.-F., 2019. Detection of African swine fever virus in pork products brought to Taiwan by travellers. Emerging Microbes and Infections 8: 1000-1002. https://doi.org/10.1080/22221751.2019.1636615

  • Collapse
  • Expand