6. African swine fever vaccines

In: Understanding and combatting African Swine Fever
Author:
C.L. Netherton The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, United Kingdom.

Search for other papers by C.L. Netherton in
Current site
Google Scholar
PubMed
Close
Open Access

African swine fever virus causes an acute haemorrhagic fever in domestic pigs and wild boar which is invariably fatal. Introduction of the disease into Georgia in 2007 has led to the deaths of tens of millions of animals across Eastern Europe, Asia and Oceania with serious effects on animal welfare and global food security. Control of the disease is impaired by the lack of an effective vaccine and is dependent on strict biosecurity at the farm gate, and rapid diagnosis, quarantine and slaughter of infected herds. The few pigs that do recover from disease are robustly protected from a subsequent encounter with the same virus isolate, showing that immunity is achievable. This review provides a historical perspective on the approaches that researchers have taken to develop African swine fever vaccines, as well as discussing promising modern techniques such as targeted gene deleted viruses and viral vectored vaccines.

  • Afonso, C.L., Zsak, L., Carrillo, C., Borca, M.V. and Rock, D.L., 1998. African swine fever virus NL gene is not required for virus virulence. Journal of General Virology 79: 2543-2547. https://doi.org/10.1099/0022-1317-79-10-2543

  • Argilaguet, J.M., Perez-Martin, E., Gallardo, C., Salguero, F.J., Borrego, B., Lacasta, A., Accensi, F., Diaz, I., Nofrarias, M., Pujols, J., Blanco, E., Perez-Filgueira, M., Escribano, J.M. and Rodriguez, F., 2011. Enhancing DNA immunization by targeting ASFV antigens to SLA-II bearing cells. Vaccine 29: 5379-5385. https://doi.org/10.1016/j.vaccine.2011.05.084

  • Argilaguet, J.M., Perez-Martin, E., Nofrarias, M., Gallardo, C., Accensi, F., Lacasta, A., Mora, M., Ballester, M., Galindo-Cardiel, I., Lopez-Soria, S., Escribano, J.M., Reche, P.A. and Rodriguez, F., 2012. DNA vaccination partially protects against African swine fever virus lethal challenge in the absence of antibodies. PloS One 7: e40942. https://doi.org/10.1371/journal.pone.0040942

  • Balyshev, V.M., Kalantaenko, Y.F., Bolgova, M.V. and Prodnikova, E.Y., 2011. Seroimmunological affiliation of African swine fever virus isolated in the Russian Federation. Russian Agricultural Sciences 37: 427-429.

  • Barasona, J.A., Gallardo, C., Cadenas-Fernandez, E., Jurado, C., Rivera, B., Rodriguez-Bertos, A., Arias, M. and Sanchez-Vizcaino, J.M., 2019. First oral vaccination of Eurasian wild boar against african swine fever virus genotype II. Frontiers in Veterinary Science 6: 137. https://doi.org/10.3389/fvets.2019.00137

  • Barber, C., Netherton, C., Goatley, L., Moon, A., Goodbourn, S. and Dixon, L., 2017. Identification of residues within the African swine fever virus DP71L protein required for dephosphorylation of translation initiation factor eIF2alpha and inhibiting activation of pro-apoptotic CHOP. Virology 504: 107-113. https://doi.org/10.1016/j.virol.2017.02.002

  • Barderas, M.G., Rodriguez, F., Gomez-Puertas, P., Aviles, M., Beitia, F., Alonso, C. and Escribano, J.M., 2001. Antigenic and immunogenic properties of a chimera of two immunodominant African swine fever virus proteins. Archives of Virology 146: 1681-1691. https://doi.org/10.1007/s007050170056

  • Black, D.N. and Brown, F., 1976. Purification and physicochemical characteristics of African swine fever virus. Journal of General Virology 32: 509-518. https://doi.org/10.1099/0022-1317-32-3-509

  • Blome, S., Gabriel, C. and Beer, M., 2014. Modern adjuvants do not enhance the efficacy of an inactivated African swine fever virus vaccine preparation. Vaccine 32: 3879-3882. https://doi.org/10.1016/j.vaccine.2014.05.051

  • Borca, M.V., O’Donnell, V., Holinka, L.G., Risatti, G.R., Ramirez-Medina, E., Vuono, E.A., Shi, J., Pruitt, S., Rai, A., Silva, E., Velazquez-Salinas, L. and Gladue, D.P., 2020. Deletion of CD2-like gene from the genome of African swine fever virus strain Georgia does not attenuate virulence in swine. Science Reports 10: 494. https://doi.org/10.1038/s41598-020-57455-3

  • Budarkov, V.A., Sereda, A.D. and Balyshev, V.M., 2017. Protective properties of attenuated strains of the african swine fever virus in the course of immunodeficiency induced by radiation. Russian Agricultural Sciences 43: 432-436. https://doi.org/10.3103/S1068367417050044

  • Burmakina, G., Malogolovkin, A., Tulman, E.R., Xu, W., Delhon, G., Kolbasov, D. and Rock, D.L., 2019. Identification of T-cell epitopes in African swine fever virus CD2v and C-type lectin proteins. Journal of General Virology 100: 259-265. https://doi.org/10.1099/jgv.0.001195

  • Cadenas-Fernandez, E., Sanchez-Vizcaino, J.M., Kosowska, A., Rivera, B., Mayoral-Alegre, F., Rodriguez-Bertos, A., Yao, J., Bray, J., Lokhandwala, S., Mwangi, W. and Barasona, J.A., 2020. Adenovirus-vectored African swine fever virus antigens cocktail is not protective against virulent Arm07 isolate in Eurasian wild boar. Pathogens 9: 171. https://doi.org/10.3390/pathogens9030171

  • Chapman, D.A., Tcherepanov, V., Upton, C. and Dixon, L.K., 2008. Comparison of the genome sequences of non-pathogenic and pathogenic African swine fever virus isolates. Journal of General Virology 89: 397-408. https://doi.org/10.1099/vir.0.83343-0

  • Chen, W., Zhao, D., He, X., Liu, R., Wang, Z., Zhang, X., Li, F., Shan, D., Chen, H., Zhang, J., Wang, L., Wen, Z., Wang, X., Guan, Y., Liu, J. and Bu, Z., 2020. A seven-gene-deleted African swine fever virus is safe and effective as a live attenuated vaccine in pigs. Science China Life Sciences 63: 623-634. https://doi.org/10.1007/s11427-020-1657-9

  • Coelho, J. and Leitão, A., 2020. The African swine fever virus (ASFV) topoisomerase II as a target for viral prevention and control. Vaccines 8: 312. https://doi.org/https://doi.org/10.3390/vaccines8020312

  • Costa, J.V., 1990. African swine fever virus. In: G. Darai (ed.) Molecular biology of Iridoviruses. Kluwer Academic Publishers, Dordrecht, the Netherlands, pp. 247-270.

  • DeTray, D.E., 1957. Persistence of viremia and immunity in African swine fever. American Journal of Veterinary Research 18: 811-816.

  • Elde, N.C., Child, S.J., Eickbush, M.T., Kitzman, J.O., Rogers, K.S., Shendure, J., Geballe, A.P. and Malik, H.S., 2012. Poxviruses deploy genomic accordions to adapt rapidly against host antiviral defenses. Cell 150: 831-841. https://doi.org/10.1016/j.cell.2012.05.049

  • Forman, A.J., Wardley, R.C. and Wilkinson, P.J., 1982. The immunological response of pigs and guinea pigs to antigens of African swine fever virus. Archives of Virology 74: 91-100. https://doi.org/10.1007/BF01314703

  • Freitas, F.B., Simoes, M., Frouco, G., Martins, C. and Ferreira, F., 2019. Towards the generation of an ASFV-pA104R DISC mutant and a complementary cell line – a potential methodology for the production of a vaccine candidate. Vaccines 7: 68. https://doi.org/10.3390/vaccines7030068

  • Frouco, G., Freitas, F.B., Coelho, J., Leitao, A., Martins, C. and Ferreira, F., 2017. DNA-binding properties of African swine fever virus pA104R, a histone-like protein involved in viral replication and transcription. Journal of Virology 91: e02498-16. https://doi.org/10.1128/jvi.02498-16

  • Gallardo, C., Soler, A., Rodze, I., Nieto, R., Cano-Gomez, C., Fernandez-Pinero, J. and Arias, M., 2019. Attenuated and non-haemadsorbing (non-HAD) genotype II African swine fever virus (ASFV) isolated in Europe, Latvia 2017. Transboundary and Emerging Diseases 66: 1399-1404. https://doi.org/10.1111/tbed.13132

  • Goatley, L., Reis, A., Portugal, R., Goldswain, H., Shimmon, G., Hargreaves, Z., Ho, C.-S., Montoya, M., Sánchez-Cordón, P., Taylor, G., Dixon, L. and Netherton, C., 2020. A pool of eight virally vectored African swine fever antigens protect pigs against fatal disease. Vaccines 8: 234. https://doi.org/10.3390/vaccines8020234

  • Gomez-Puertas, P., Rodriguez, F., Oviedo, J.M., Brun, A., Alonso, C. and Escribano, J.M., 1998. The African swine fever virus proteins p54 and p30 are involved in two distinct steps of virus attachment and both contribute to the antibody-mediated protective immune response. Virology 243: 461-471. https://doi.org/10.1006/viro.1998.9068

  • Gómez-Puertas, P., Rodríguez, F., Oviedo, J.M., Ramiro-Ibáñez, F., Ruiz-Gonzalvo, F., Alonso, C. and Escribano, J.M., 1996. Neutralizing antibodies to different proteins of African swine fever virus inhibit both virus attachment and internalization. Journal of Virology 70: 5689-5694. https://doi.org/10.1128/JVI.70.8.5689-5694.1996

  • Jancovich, J.K., Chapman, D., Hansen, D.T., Robida, M.D., Loskutov, A., Craciunescu, F., Borovkov, A., Kibler, K., Goatley, L., King, K., Netherton, C.L., Taylor, G., Jacobs, B., Sykes, K. and Dixon, L.K., 2018. Immunisation of pigs by DNA prime and recombinant vaccinia virus boost to identify and rank African swine fever virus immunogenic and protective proteins. Journal of Virology 92: e02219-17. https://doi.org/10.1128/jvi.02219-17

  • Jenson, J.S., Childerstone, A., Takamatsu, H., Dixon, L.K. and Parkhouse, R.M., 2000. The cellular immune recognition of proteins expressed by an African swine fever virus random genomic library. Journal of Immunological Methods 242: 33-42. https://doi.org/10.1016/s0022-1759(00)00222-2

  • Kihm, U., Ackermann, M., Mueller, H. and Pool, R., 1987. Approaches to vaccination. In: Y. Becker (ed.), African swine fever. Developments in veterinary virology. Martinus Nijhoff Publishing, Boston, MA, USA, pp. 127-144.

  • King, K., Chapman, D., Argilaguet, J.M., Fishbourne, E., Hutet, E., Cariolet, R., Hutchings, G., Oura, C.A., Netherton, C.L., Moffat, K., Taylor, G., Le Potier, M.F., Dixon, L.K. and Takamatsu, H.H., 2011. Protection of European domestic pigs from virulent African isolates of African swine fever virus by experimental immunisation. Vaccine 29: 4593-4600. https://doi.org/10.1016/j.vaccine.2011.04.052

  • Kollnberger, S.D., Gutierrez-Castaneda, B., Foster-Cuevas, M., Corteyn, A. and Parkhouse, R.M., 2002. Identification of the principal serological immunodeterminants of African swine fever virus by screening a virus cDNA library with antibody. Journal of General Virology 83: 1331-1342. https://doi.org/10.1099/0022-1317-83-6-1331

  • Krug, P.W., Holinka, L.G., O’Donnell, V., Reese, B., Sanford, B., Fernandez-Sainz, I., Gladue, D.P., Arzt, J., Rodriguez, L., Risatti, G.R. and Borca, M.V., 2015. The progressive adaptation of a georgian isolate of African swine fever virus to Vero cells leads to a gradual attenuation of virulence in swine corresponding to major modifications of the viral genome. Journal of Virology 89: 2324-2332. https://doi.org/10.1128/jvi.03250-14

  • Lacasta, A., Ballester, M., Monteagudo, P.L., Rodriguez, J.M., Salas, M.L., Accensi, F., Pina-Pedrero, S., Bensaid, A., Argilaguet, J., Lopez-Soria, S., Hutet, E., Le Potier, M.F. and Rodriguez, F., 2014. Expression library immunization can confer protection against lethal challenge with African swine fever virus. Journal of Virology 88: 13322-13332. https://doi.org/10.1128/jvi.01893-14

  • Lacasta, A., Monteagudo, P.L., Jimenez-Marin, A., Accensi, F., Ballester, M., Argilaguet, J., Galindo-Cardiel, I., Segales, J., Salas, M.L., Dominguez, J., Moreno, A., Garrido, J.J. and Rodriguez, F., 2015. Live attenuated African swine fever viruses as ideal tools to dissect the mechanisms involved in viral pathogenesis and immune protection. Veterinary Research 46: 135. https://doi.org/10.1186/s13567-015-0275-z

  • Leite Velho, E., 1956. Observations sur la peste porcine en Angola. Bulletin de l’Office International des Epizooties 46: 335-340.

  • Lewis, T., Zsak, L., Burrage, T.G., Lu, Z., Kutish, G.F., Neilan, J.G. and Rock, D.L., 2000. An African swine fever virus ERV1-ALR homologue, 9GL, affects virion maturation and viral growth in macrophages and viral virulence in swine. Journal of Virology 74: 1275-1285. https://doi.org/10.1128/jvi.74.3.1275-1285.2000

  • Lokhandwala, S., Petrovan, V., Popescu, L., Sangewar, N., Elijah, C., Stoian, A., Olcha, M., Ennen, L., Bray, J., Bishop, R.P., Waghela, S.D., Sheahan, M., Rowland, R.R.R. and Mwangi, W., 2019. Adenovirus-vectored African swine fever virus antigen cocktails are immunogenic but not protective against intranasal challenge with Georgia 2007/1 isolate. Veterinary Microbiology 235: 10-20. https://doi.org/10.1016/j.vetmic.2019.06.006

  • Lokhandwala, S., Waghela, S.D., Bray, J., Martin, C.L., Sangewar, N., Charendoff, C., Shetti, R., Ashley, C., Chen, C.H., Berghman, L.R., Mwangi, D., Dominowski, P.J., Foss, D.L., Rai, S., Vora, S., Gabbert, L., Burrage, T.G., Brake, D., Neilan, J. and Mwangi, W., 2016. Induction of robust immune responses in swine by using a cocktail of adenovirus-vectored African swine fever virus antigens. Clinical and Vaccine Immunology 23: 888-900. https://doi.org/10.1128/cvi.00395-16

  • Lokhandwala, S., Waghela, S.D., Bray, J., Sangewar, N., Charendoff, C., Martin, C.L., Hassan, W.S., Koynarski, T., Gabbert, L., Burrage, T.G., Brake, D., Neilan, J. and Mwangi, W., 2017. Adenovirus-vectored novel African swine fever virus antigens elicit robust immune responses in swine. PloS One 12: e0177007. https://doi.org/10.1371/journal.pone.0177007

  • Mallapaty, S., 2019. Spread of deadly pig virus in China hastens vaccine research. Nature 569: 13-14. https://doi.org/10.1038/d41586-019-01269-5

  • Malmquist, W.A., 1962. Propagation, modification, and hemadsorption of African swine fever virus in cell cultures. American Journal of Veterinary Research 23: 241-247.

  • Malmquist, W.A., 1963. Serologic and immunologic studies with African swine fever virus. American Journal of Veterinary Research 24: 450-459.

  • Malmquist, W.A. and Hay, D., 1960. Hemadsorption and cytopathic effect produced by ASFV in swine bone marrow and buffy coat cultures. American Journal of Veterinary Research 21: 104-108.

  • Malogolovkin, A., Burmakina, G., Tulman, E.R., Delhon, G., Diel, D.G., Salnikov, N., Kutish, G.F., Kolbasov, D. and Rock, D.L., 2015. African swine fever virus CD2v and C-type lectin gene loci mediate serological specificity. Journal of General Virology 96: 866-873. https://doi.org/10.1099/jgv.0.000024

  • Manso Ribeiro, J., Nunes Petisca, J.L., Lopes Frazao, F. and Sobral, M., 1963. Vaccination contre la peste porcine africaine. Bulletin de L’Office International des Épizooties 60: 921-937.

  • Monteagudo, P.L., Lacasta, A., Lopez, E., Bosch, L., Collado, J., Pina-Pedrero, S., Correa-Fiz, F., Accensi, F., Navas, M.J., Vidal, E., Bustos, M.J., Rodriguez, J.M., Gallei, A., Nikolin, V., Salas, M.L. and Rodriguez, F., 2017. BA71DeltaCD2: a new recombinant live attenuated African swine fever virus with cross-protective capabilities. Journal of Virology 91: e01058-1. https://doi.org/10.1128/jvi.01058-17

  • Montgomery, R.E., 1921. On a form of swine fever occurring in British East Africa (Kenya colony). Journal of Comparative Pathology and Therapeutics 34: 159-191 (part I), 243-269 (part II).

  • Moore, D.M., Zsak, L., Neilan, J.G., Lu, Z. and Rock, D.L., 1998. The African swine fever virus thymidine kinase is required for efficient replication in swine macrophages and for virulence in swine. Journal of Virology 72: 10310-10315. https://doi.org/10.1128/JVI.72.12.10310-10315.1998

  • Neilan, J.G., Zsak, L., Lu, Z., Burrage, T.G., Kutish, G.F. and Rock, D.L., 2004. Neutralizing antibodies to African swine fever virus proteins p30, p54, and p72 are not sufficient for antibody-mediated protection. Virology 319: 337-342. https://doi.org/10.1016/j.virol.2003.11.011

  • Neilan, J.G., Zsak, L., Lu, Z., Kutish, G.F., Afonso, C.L. and Rock, D.L., 2002. Novel swine virulence determinant in the left variable region of the African swine fever virus genome. Journal of Virology 76: 3095-3104. https://doi.org/10.1128/jvi.76.7.3095-3104.2002.

  • Netherton, C.L., Goatley, L.C., Reis, A.L., Portugal, R., Nash, R.H., Morgan, S.B., Gault, L., Nieto, R., Norlin, V., Gallardo, C., Ho, C.-S., Sánchez-Cordón, P.J., Taylor, G. and Dixon, L.K., 2019. Identification and immunogenicity of African swine fever virus antigens. Frontiers in Immunology 10: 1318. https://doi.org/10.3389/fimmu.2019.01318

  • Nunes Petisca, J.L., 1965. Quelques aspects morphologiques des suites de la vaccination contre la peste porcine africaine (Virose L) au Portugal. Bulletin de l’Office International des Epizooties 63: 199-237.

  • O’Donnell, V., Holinka, L.G., Gladue, D.P., Sanford, B., Krug, P.W., Lu, X., Arzt, J., Reese, B., Carrillo, C., Risatti, G.R. and Borca, M.V., 2015a. African swine fever virus Georgia isolate harboring deletions of MGF360 and MGF505 genes is attenuated in swine and confers protection against challenge with virulent parental virus. Journal of Virology 89: 6048-6056. https://doi.org/10.1128/jvi.00554-15

  • O’Donnell, V., Holinka, L.G., Krug, P.W., Gladue, D.P., Carlson, J., Sanford, B., Alfano, M., Kramer, E., Lu, Z., Arzt, J., Reese, B., Carrillo, C., Risatti, G.R. and Borca, M.V., 2015b. African swine fever virus Georgia 2007 with a deletion of virulence-associated gene 9GL (B119L), when administered at low doses, leads to virus attenuation in swine and induces an effective protection against homologous challenge. Journal of Virology 89: 8556-8566. https://doi.org/10.1128/jvi.00969-15

  • O’Donnell, V., Holinka, L.G., Sanford, B., Krug, P.W., Carlson, J., Pacheco, J.M., Reese, B., Risatti, G.R., Gladue, D.P. and Borca, M.V., 2016. African swine fever virus Georgia isolate harboring deletions of 9GL and MGF360/505 genes is highly attenuated in swine but does not confer protection against parental virus challenge. Virus Research 221: 8-14. https://doi.org/10.1016/j.virusres.2016.05.014

  • O’Donnell, V., Risatti, G.R., Holinka, L.G., Krug, P.W., Carlson, J., Velazquez-Salinas, L., Azzinaro, P.A., Gladue, D.P. and Borca, M.V., 2017. Simultaneous deletion of the 9GL and UK genes from the African swine fever virus Georgia 2007 isolate offers increased safety and protection against homologous challenge. Journal of Virology 91: e01760-16. https://doi.org/10.1128/jvi.01760-16

  • Onisk, D.V., Borca, M.V., Kutish, G., Kramer, E., Irusta, P. and Rock, D.L., 1994. Passively transferred African swine fever virus antibodies protect swine against lethal infection. Virology 198: 350-354. https://doi.org/10.1006/viro.1994.1040

  • Oura, C.A., Denyer, M.S., Takamatsu, H. and Parkhouse, R.M., 2005. In vivo depletion of CD8+ T lymphocytes abrogates protective immunity to African swine fever virus. Journal of General Virology 86: 2445-2450. https://doi.org/10.1099/vir.0.81038-0

  • Perez-Nunez, D., Sunwoo, S.Y., Sanchez, E.G. Haley, N., Garcia-Belmonte, R., Nogal, M., Morozov, I., Madden, D., Gaudreault, N.N., Mur, L., Shivanna, V., Richt, J.A. and Revilla, Y., 2019. Evaluation of a viral DNA-protein immunization strategy against African swine fever in domestic pigs. Veterinary Immunology and Immunopathology 208: 34-43. https://doi.org/10.1016/j.vetimm.2018.11.018

  • Ramirez-Medina, E., Vuono, E., O’Donnell, V., Holinka, L.G., Silva, E., Rai, A., Pruitt, S., Carrillo, C., Gladue, D.P. and Borca, M.V., 2019. Differential effect of the deletion of African swine fever virus virulence-associated genes in the induction of attenuation of the highly virulent Georgia strain. Viruses 11: 599. https://doi.org/10.3390/v11070599

  • Reis, A.L., Abrams, C.C., Goatley, L.C., Netherton, C., Chapman, D.G., Sanchez-Cordon, P. and Dixon, L.K., 2016. Deletion of African swine fever virus interferon inhibitors from the genome of a virulent isolate reduces virulence in domestic pigs and induces a protective response. Vaccine 34: 4698-4705. https://doi.org/10.1016/j.vaccine.2016.08.011

  • Reis, A.L., Goatley, L.C., Jabbar, T., Sanchez-Cordon, P.J., Netherton, C.L., Chapman, D.G. and Dixon, L.K., 2017. Deletion of the African swine fever virus gene DP148R does not reduce virus replication in culture but reduces virus virulence in pigs and induces high levels of protection against challenge. Journal of Virology 91: e01428-17. https://doi.org/10.1128/jvi.01428-17

  • Reis, A.L., Parkhouse, R.M., Penedos, A.R., Martins, C. and Leitao, A., 2007. Systematic analysis of longitudinal serological responses of pigs infected experimentally with African swine fever virus. Journal of General Virology 88: 2426-2434. https://doi.org/10.1099/vir.0.82857-0

  • Rodríguez, J.M., Yáñez, R.J., Almazán, F., Viñuela, E. and Rodriguez, J.F., 1993. African swine fever virus encodes a CD2 homolog responsible for the adhesion of erythrocytes to infected cells. Journal of Virology 67: 5312-5320.

  • Ruíz-Gonzalvo, F. and Coll, J.M., 1993. Characterization of a soluble hemagglutinin induced in African swine fever virus-infected cells. Virology 196: 769-777.

  • Ruiz Gonzalvo, F., Caballero, C., Martinez, J. and Carnero, M.E., 1986a. Neutralization of African swine fever virus by sera from African swine fever-resistant pigs. American Journal of Veterinary Research 47: 1858-1862.

  • Ruiz Gonzalvo, F., Carnero, M.E., Caballero, C. and Martinez, J., 1986b. Inhibition of African swine fever infection in the presence of immune sera in vivo and in vitro. American Journal of Veterinary Research 47: 1249-1252.

  • Ruiz-Gonzalvo, F., Rodriguez, F. and Escribano, J.M., 1996. Functional and immunological properties of the baculovirus-expressed hemagglutinin of African swine fever virus. Virology 218: 285-289. https://doi.org/10.1006/viro.1996.0193

  • Sánchez Botija, C., 1962. Estudios sobre la peste porcina Africana en España. Bulletin de l’Office International des Epizooties 58: 707-727.

  • Sánchez Botija, C., 1963. Modificatión del virus de la peste porcina Africana en cultivos celulares. Bulletin de l’Office International des Epizooties 60: 901-919.

  • Schlafer, D.H., McVicar, J.W. and Mebus, C.A., 1984. African swine fever convalescent sows: subsequent pregnancy and the effect of colostral antibody on challenge inoculation of their pigs. American Journal of Veterinary Research 45: 1361-1366.

  • Schloer, G.M., 1980. Effect of storage at different temperatures on African swine fever (ASF) antigen treated with 10 mM binary ethylenimine. In: Proceedings of the Annual Meeting of the American Association of Veterinary Laboratory Diagnosticians vol. 23, pp. 351-363.

  • Sereda, A.D., 2013. Immunogenic and protective characteristics of African swine fever virus glycoproteins Actual’nye Voprosy Veterinarnoi Biologii 4: 31-35.

  • Sereda, A.D., Balyshev, V.M., Kazakova, A.S., Imatdinov, A.R. and Kolbasov, D.V., 2020. Protective properties of attenuated strains of African swine fever virus belonging to seroimmunotypes I-VIII. Pathogens 9: 274. https://doi.org/10.3390/pathogens9040274

  • Sereda, A.D., Kazakova, A.S., Imatdinov, I.R. and Kolbasov, D.V., 2018. Serotype-specific and haemadsorption protein of the African swine fever virus. Slovenian Veterinary Research 55: 141-150. https://doi.org/http://dx.doi.org/10.26873/SVR-454-2018

  • Sunwoo, S.Y., Perez-Nunez, D., Morozov, I., Sanchez, E.G. Gaudreault, N.N., Trujillo, J.D., Mur, L., Nogal, M., Madden, D., Urbaniak, K., Kim, I.J., Ma, W., Revilla, Y. and Richt, J.A., 2019. DNA-protein vaccination strategy does not protect from challenge with African swine fever virus Armenia 2007 strain. Vaccines 7: 12. https://doi.org/10.3390/vaccines7010012

  • Tabarés, E., Marcotegui, M.A., Fernández, M. and Sánchez-Botija, C., 1980. Proteins specified by African swine fever virus I. Analysis of viral structural proteins and antigenic properties. Archives of Virology 66: 107-117. https://doi.org/10.1007/BF01314979

  • Wardley, R.C., Norley, S.G., Wilkinson, P.J. and Williams, S., 1985. The role of antibody in protection against African swine fever virus. Veterinary Immunology and Immunopathology 9: 201-212. https://doi.org/10.1016/0165-2427(85)90071-6

  • Zsak, L., Caler, E., Lu, Z., Kutish, G.F., Neilan, J.G. and Rock, D.L., 1998. A nonessential African swine fever virus gene UK is a significant virulence determinant in domestic swine. Journal of Virology 72: 1028-1035. https://doi.org/10.1128/JVI.72.2.1028-1035.1998

  • Zsak, L., Lu, Z., Kutish, G.F., Neilan, J.G. and Rock, D.L., 1996. An African swine fever virus virulence-associated gene NL-S with similarity to the herpes simplex virus ICP34.5 gene. Journal of Virology 70: 8865-8871. https://doi.org/10.1128/JVI.70.12.8865-8871.1996

  • Collapse
  • Expand