Chapter 26: The role of hearing in mosquito behaviour

In: Sensory ecology of disease vectors
L. Feugère Natural Resources Institute, University of Greenwich, Chatham, Kent ME4 4TB, United Kingdom.

Search for other papers by L. Feugère in
Current site
Google Scholar
P.M.V. Simões School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RH, United Kingdom.

Search for other papers by P.M.V. Simões in
Current site
Google Scholar
I.J. Russell School of Applied Sciences, University of Brighton, Brighton BN2 4GJ, United Kingdom.

Search for other papers by I.J. Russell in
Current site
Google Scholar
, and
G. Gibson Natural Resources Institute, University of Greenwich, Chatham, Kent ME4 4TB, United Kingdom.

Search for other papers by G. Gibson in
Current site
Google Scholar
Open Access

Mosquitoes generate sounds by flapping their wings in flight, which are thought to have a role in acoustic communication. Furthermore, the auditory organs of mosquitoes are the most sensitive among all arthropods reported so far. However, the function of hearing in mosquitoes is still unclear, and various debates have been raised in the scientific community. This book chapter reviews current knowledge about mosquito hearing, and is directed to the mosquito ecology community. First, we review acoustical aspects of hearing which need to be taken into account to understand the capabilities of insect sensory systems across a range of distances (near-field/far-field, active/reactive field and air particle velocity/pressure). Second, the basic mechanism of antennal hearing is explained in terms of sound-level and frequency sensitivities, interactions with the Johnston’s organ and spatial hearing. Third, we review a range of theories behind the role of the acoustic interactions between male and female mosquitoes (harmonic convergence, rapid frequency modulation and species-specificity), and discuss some of the main interpretations of these behaviours. Finally, we discuss the hearing range of mosquitoes in relation to communication and sound traps.

  • Aldersley, A, Champneys, A., Homer, M. and Robert, D., 2016. Quantitative analysis of harmonic convergence in mosquito auditory interactions. Journal of the Royal Society Interface 13: 20151007.

  • Aldersley, A. and Cator, L.J., 2019. Female resistance and harmonic convergence influence male mating success in Aedes aegypti. Scientific Reports 9: 2145.

  • Aldersley, A., Champneys, A., Homer, M., Bode, N.W. and Robert, D., 2017. Emergent acoustic order in arrays of mosquitoes. Current Biology 27: R1208-R1210.

  • Andrés, M., Seifert, M., Spalthoff, C., Warren, B., Weiss, L., Giraldo, D., Winkler, M., Pauls, S. and Göpfert, M.C., 2016. Auditory efferent system modulates mosquito hearing. Current Biology 26: 2028-2036.

  • Arthur, B.J., Emr, K.S., Wyttenbach, R.A. and Hoy, R.R., 2014. Mosquito (Aedes aegypti) flight tones: frequency, harmonicity, spherical spreading, and phase relationships. The Journal of the Acoustical Society of America 135: 933-941.

  • Assogba, B.S., Djogbénou, L., Saizonou, J., Diabaté, A., Dabiré, R.K.,Moiroux, N., Gilles, J.R., Makoutodé, M. and Baldet, T., 2014. Characterization of swarming and mating behaviour between Anopheles coluzzii and Anopheles melas in a sympatry area of Benin. Acta Tropica 132: S53-S63.

  • Azovsky, A. and Fyodorova, M., 2003. Interactions between swarming Chironomus annularius (Diptera: Chironomidae) males: role of acoustic behavior. Journal of Insect Behavior 16: 295-306.

  • Balestrino, F., Iyaloo, D.P., Elahee, K.B., Bheecarry, A., Campedelli, F., Carrieri, M. and Bellini, R., 2016. A sound trap for Aedes albopictus (Skuse) male surveillance: response analysis to acoustic and visual stimuli. Acta Tropica 164: 448-454.

  • Bartlett-Healy, K., Crans, W. and Gaugler, R., 2008. Phonotaxis to amphibian vocalizations in Culex territans (Diptera: Culicidae). Annals of the Entomological Society of America 101: 95-103.[95:PTAVIC]2.0.CO;2

  • Belton, P., 1961. The physiology of sound reception in insects. In: Proceedings of Entomological Society of Ontario 92: 20-26. Available in:

  • Belton, P., 1974. Experimental analysis of insect behaviour. Springer, Berlin, Germany, pp. 376.

  • Belton, P., 1994. Attraction of male mosquitoes to sound. Journal of American Mosquito Control Association 10: 297-301.

  • Bennet-Clark, H. and Ewing, A., 1967. Stimuli provided by courtship of male Drosophila melanogaster. Nature 215: 669-671.

  • Bennet-Clark, H.C., 1970. The mechanism and efficiency of sound production in mole crickets. Journal of Experimental Biology 52: 619-652.

  • Bennet-Clark, H.C., 1998. Size and scale effects as constraints in insect sound communication. Philosophical Transactions of The Royal Society, B: Biological Sciences 353: 407-419.

  • Boo, K.S. and Richards, A.G., 1975a. Fine structure of the scolopidia in the Johnston’s organ of male Aedes aegypti (l.) (Diptera: Culicidae). International Journal of Insect Morphology and Embryology 4: 549-566.

  • Boo, K.S. and Richards, A.G., 1975b. Fine structure of scolopidia in Johnston’s organ of female Aedes aegypti compared with that of the male. Journal of Insect Physiology 21: 1129-1139.

  • Boulard, M., 2005. Insect sounds and communication: physiology, behaviour, ecology, and evolution. In: Drosopoulos, S. and Claridge M. (eds.) Insect sounds and communication: physiology, behaviour, ecology and evolution, CRC Press, Boca Raton, FL, USA.

  • Brogdon, W.G., 1998. Measurement of flight tone differentiates among members of the Anopheles gambiaespecies complex (Diptera: Culicidae). Journal of Medical Entomology 35: 681-684.

  • Cator, L.J. and Harrington, L.C., 2011. The harmonic convergence of fathers predicts the mating success of sons in Aedes aegypti. Animal Behaviour, 82: 627-633.

  • Cator, L.J., Arthur, B.J., Harrington, L.C. and Hoy, R.R., 2009. Harmonic convergence in the love songs of the dengue vector mosquito. Science 323: 1077-1079.

  • Cator, L.J., Ng’Habi, K.R., Hoy, R.R. and Harrington, L.C., 2010. Sizing up a mate: variation in production and response to acoustic signals in Anopheles gambiae. Behavioral Ecology 21: 1033-1039.

  • Charlwood, J.D. and Jones, M.D.R., 1979. Mating behaviour in the mosquito, Anopheles gambiae s.l. I. Close range and contact behaviour. Physiological Entomology 4: 111-120.

  • Child, C.M., 1894. Ein bisher wenig beachtetes antennales sinnesorgan der insekten, mit besonderer berücksichtigung der culiciden und chironomiden. Zeitschrift für wissenschaftliche Zoologie 58: 475-528.

  • Clements, A.N., 1999. The biology of mosquitoes, Volume 2 (Sensory reception and behaviour), CABI Publishing, New York, USA, pp. 752

  • Costello, R.A., 1974. Effects of environmental and physiological factors on the acoustic behavior of Aedes aegypti (L.) (Diptera: Culicidae). PhD thesis, Simon Fraser University. Available at:

  • De Riville, G., 1760. Mémoire sur l’accouplement des cousins. Mémoire de l’Académie des Sciences de Paris 3: 617-622.

  • De Silva, P., Nutter, B. and Bernal, X.E., 2015. Use of acoustic signals in mating in an eavesdropping frog-biting midge. Animal Behaviour 103: 45-51.

  • Dou, Z., Madan, A., Carlson, J.S., Chung, J., Spoleti, T., Dimopoulos, G., Cammarato, A. and Mittal, R., 2021. Acoustotactic response of mosquitoes in untethered flight to incidental sound. Scientific Reports 11: 1884.

  • Elsner, N., 1974. Neuroethology of sound production in gomphocerine grasshoppers (Orthoptera: Acrididae). Journal of Comparative Physiology 88: 67-102.

  • Feugère, L., Gibson, G., Manoukis, N.C. and Roux, O., 2021. Mosquito sound communication: are male swarms loud enough to attract females? Journal of The Royal Society Interface 18: 20210121. https://doi.og/10.1098/rsif.2021.0121

  • Feugère, L., Roux, O. and Gibson, G., 2022. Behavioural analysis of swarming male mosquitoes reveals high hearing sensitivity in Anopheles coluzzii. Journal of Experimental Biology, jeb.243535.

  • Fletcher, N.H., 1978. Acoustical response of hair receptors in insects. Journal of Comparative Physiology 127: 185-189.

  • Foster, W.A. and Lutes, K.I., 1985. Tests of ultrasonic emissions on mosquito attraction to hosts in a flight chamber. Journal of the American Mosquito Control Association 1: 199-202.

  • Garcia Castillo, S.S., Pritts, K.S., Krishnan, R.S., Harrington, L.C. and League, G.P., 2021. Harmonic convergence coordinates swarm mating by enhancing mate detection in the malaria mosquito Anopheles gambiae. Scientific Reports 11: 24102.

  • Gibson, G. and Russell, I.J., 2006. Flying in tune: sexual recognition in mosquitoes. Current Biology 16: 1311-1316.

  • Gibson, G., Warren, B. and Russell, I.J., 2010. Humming in tune: sex and species recognition by mosquitoes on the wing. Journal of the Association for Research in Otolaryngology 11: 527-540.

  • Göpfert, M., Briegel, H. and Robert, D., 1999. Mosquito hearing: sound-induced antennal vibrations in male and female Aedes aegypti. Journal of Experimental Biology 202: 2727-2738.

  • Göpfert, M.C. and Hennig, R.M., 2016. Hearing in insects. Annual Review of Entomology 61: 57-76.

  • Göpfert, M.C. and Robert, D., 2000. Nanometre-range acoustic sensitivity in male and female mosquitoes. Proceedings of the Royal Society of London, Series B: Biological Sciences 267: 453-457.

  • Göpfert, M.C. and Robert, D., 2001. Active auditory mechanics in mosquitoes. Proceedings of the Royal Society of London, Series B: Biological Sciences 268: 333-339.

  • Goulson D., Birch M.C. and Wyatt T.D., 1994. Mate location in the deathwatch beetle, Xestobium rufovillosum De Geer (Anobiidae): orientation to substrate vibrations. Animal Behaviour 47: 899-907.

  • Gwynne, D.T. and Edwards, E.D., 1986. Ultrasound production by genital stridulation in Syntonarcha iriastis (Lepidoptera: Pyralidae): long-distance signalling by male moths? Zoological Journal of the Linnean Society 88: 363-376.

  • Ikeshoji, T., 1985. Age structure and mating status of the male mosquitoes responding to sound. Medical Entomology and Zoology 36: 95-101.

  • Ikeshoji, T., 1986. Distribution of the mosquitoes, Culex tritaeniorhynchus, in relation to disposition of sound traps in a paddy field. Medical Entomology and Zoology 37: 153-159.

  • Jackson, J.C. and Robert, D., 2006. Nonlinear auditory mechanism enhances female sounds for male mosquitoes. Proceedings of the National Academy of Sciences of the USA 103: 16734-16739.

  • Jensen, T., Lampman, R., Slamecka, M.C. and Novak, R.J., 2000. Field efficacy of commercial antimosquito products in Illinois. Journal of the American Mosquito Control Association 16: 148-152.

  • Johnson, B.J., Rohde, B.B., Zeak, N., Staunton, K.M., Prachar, T. and Ritchie, S.A., 2018. A low-cost, battery-powered acoustic trap for surveilling male Aedes aegypti during rear-and-release operations. PLoS ONE 13: 1-10.

  • Johnston, C., 1855. Original communications: auditory apparatus of the Culex mosquito. Journal of Cell Science s1-3: 97-102.

  • Kahn, M.C. and Offenhauser, W., 1949. The first field tests of recorded mosquito sounds used for mosquito destruction. American Journal of Tropical Medicine s1-29: 811-825.

  • Kanda, T., Kerdpibule, V., Deesin, T., Thongrungkiat, S., Leemingsawat, S. and Chiang, G.L., 1990. Strategies for mosquito control by using a sound trap system and an insect growth regulator (pyriproxyfen) – a review. Tropical Biomedicine 7: 159-174

  • Kanmiya, K., 1996. Discovery of male acoustic signals in the greenhouse whitefly, Trialeurodes vaporariorum (Westwood) (Homoptera: Aleyrodidae). Applied Entomology and Zoology 31: 255-262.

  • Kerdpibule, V., Thongrungkiat, S. and Leemingsawat, S., 1989. Feasibility of wing beat sound trap for the control of mosquito vectors. Southeast Asian Journal of Tropical Medicine and Public Health 20: 639-641.

  • Knab, F., 1906. The swarming of Culex pipiens, Psyche 13: 123-133.

  • Kon, M., 1989. Swarming and mating behaviour of Chironomus flaviplumus (Diptera: Chironomidae), compared with a sympatric congeneric species, C. yoshimatsui. Journal of Ethology 7: 125-131.

  • Laidre, M.E. and Johnstone, 2013. Animal signals. Current Biology 23: R829-R833.

  • Lapshin, D.N. and Vorontsov, D.D., 2017. Frequency organization of the Johnston’s organ in male mosquitoes (Diptera, Culicidae). Journal of Experimental Biology 220: 3927-3938.

  • Lapshin, D.N. and Vorontsov, D.D., 2018. Low-frequency sounds repel male mosquitoes Aedes diantaeus n.d.k. (Diptera, Culicidae). Entomological Review 98: 266-271.

  • Lapshin, D.N. and Vorontsov, D.D., 2019. Directional and frequency characteristics of auditory neurons in Culex male mosquitoes. Journal of Experimental Biology 222: jeb208785.

  • Lapshin, D.N. and Vorontsov, D.D., 2021. Frequency tuning of swarming male mosquitoes (Aedes communis, Culicidae) and its neural mechanisms. Journal of Insect Physiology 132:104233.

  • Lapshin, D.N., 2012. Mosquito bioacoustics: auditory processing in Culex pipiens pipiens L. males (Diptera, Culicidae) during flight simulation. Entomological Review 92: 605-621.

  • Lapshin, D.N., 2013. The auditory system of bloodsucking mosquito females (Diptera, Culicidae): acoustic perception during flight simulation. Entomological Review 93: 135-149.

  • Leemingsawat S., Kerdpubile V., Limswan, S., Suharit, S., Ogawa, K. and Kanda, T., 1988. Response of female mosquitoes of Culex tritaeniorhynchus to sound traps of various wingbeat frequencies with hamsters and dry ice. Medical Entomology and Zoology 39: 67-70.

  • Legett, H.D., Aihara, I. and Bernal, X.E., 2021. Within host acoustic signal preference of frog-biting mosquitoes (Diptera: Culicidae) and midges (Diptera: Corethrellidae) on Iriomote Island, Japan. Entomological Science 24: 116-122.

  • Mankin, R.W., 2012. Applications of acoustics in insect pest management. CAB Reviews 7.

  • Manoukis, N.C., Butail, S., Diallo, M., Ribeiro, J.M.C. and Paley, D.A., 2014. Stereoscopic video analysis of Anopheles gambiae behavior in the field: challenges and opportunities. Acta Tropica 132: S80-S85.

  • Manoukis, N.C., Diabaté, A., Abdoulaye, A., Diallo, M., Dao, A., Yaro, A.S., Ribeiro, J.M.C. and Lehmann, T., 2009. Structure and dynamics of male swarms of Anopheles gambiae. Journal of Medical Entomology 46: 227-235.

  • Manrique, G. and Schilman, P.E., 2022. Stridulatory signals in triatomine communication and defence. Chapter 27. In: Ignell, R., Lazzari, C.R., Lorenzo, M.G. and Hill, S.R. (eds.) Sensory ecology of disease vectors. Wageningen Academic Publishers, Wageningen, the Netherlands, pp. 709-729.

  • Maxim, H.S., 1901. Mosquitoes and musical notes. Letter to the Editor. The Times (London). October 28: 11. Mayer, A.M., 1874. Experiments on the supposed auditory apparatus of the mosquito. American Naturalist 8: 577-592.

  • Menda, G., Nitzany, E.I., Shamble, P.S., Wells, A., Harrington, L.C., Miles, R.N. and Hoy, R.R., 2019. The long and short of hearing in the mosquito Aedes aegypti. Current Biology 29: 709-714.

  • Montoya, J.P., Pantoja-Sánchez, H., Gomez, S., Avila, F.W. and Alfonso-Parra, C., 2021, Flight tone characterisation of the South American malaria vector Anopheles darlingi (Diptera:Culicidae). Memórias do Instituto Oswaldo Cruz 116.

  • Mukundarajan, H., Hol, F.J.H., Castillo, E.A., Newby, C. and Prakash, M., 2017. Using mobile phones as acoustic sensors for high-throughput mosquito surveillance. eLife 6: e27854.

  • Nadrowski, B., Effertz, T., Senthilan, P.R. and Göpfert, M.C., 2011. Antennal hearing in insects – new findings, new questions. Hearing Research 273: 7-13. Comparative Studies of the Ear.

  • Nijhout, H.F., 1977. Control of antennal hair erection in male mosquitoes. Biological Bulletin 153: 591-603.

  • Ogawa, K.-I., 1988. Field study on acoustic trapping of Mansonia (Diptera: Culicidae) in Malaysia i. mass-trapping of males by a cylindrical sound trap. Applied Entomology and Zoology 23: 265-272.

  • Pantoja-Sanchez, H., Gomez, S., Velez, V., Avila, F.W. and Alfonso-Parra, C., 2019a. Precopulatory acoustic interactions of the new world malaria vector Anopheles albimanus (Diptera: Culicidae). Parasites & Vectors 12: 386.

  • Pantoja-Sanchez, H., Vargas, J.F., Ruiz-Lopez, F., Rua-Uribe, G., Vélez, V., Kline, D.L. and Bernal, X.E., 2019b. A new approach to improve acoustic trapping effectiveness for Aedes aegypti (Diptera: Culicidae). Journal of Vector Ecology 44: 216-222.

  • Pennetier, C., Warren, B., Dabiré, K.R., Russell, I.J. and Gibson, G., 2010. ‘Singing on the wing’ as a mechanism for species recognition in the malarial mosquito Anopheles gambiae. Current Biology 20: 131-136.

  • Prozesky-Schule, L., Prozesky, O.P.M., Anderson, F. and Van Der Merwe, G.J.J., 1975. Use of a self-made sound baffle by a tree cricket. Nature 255: 142-143.

  • Robert, D., 2005. Directional hearing in insects. In: Popper, A.N. and Fay, R.R. (eds.) Sound source localization. Springer handbook of auditory research, vol 25. Springer, New York, NY, USA.

  • Robles, L. and Ruggero, M.A., 2001. Mechanics of the mammalian cochlea. Physiological Reviews 81: 1305-1352.

  • Römer, H., 2020. Directional hearing in insects: biophysical, physiological and ecological challenges. Journal of Experimental Biology 223.

  • Rössler, W., Jatho, M., Kalmring, K., 2006. The auditory-vibratory sensory system in bushcrickets (Tettigoniidae, Ensifera, Orthoptera). In: Drosopoulos, S. and Claridge M. (eds.) Insect sounds and communication: physiology, behaviour, ecology and evolution, CRC Press, Boca Raton, FL, USA, pp. 552.

  • Roth, L.M., 1948. A study of mosquito behavior. an experimental laboratory study of the sexual behavior of Aedes aegypti (Linnaeus). American Midland Naturalist 40: 265-352.

  • Schreck, C.F., Webb, J.C. and Burden, G.S., 1984. Ultrasonic devices: evaluation of repellency to cockroaches and mosquitoes and measurement of sound output. Journal of Environmental Science and Health. Part A: Environmental Science and Engineering 19: 521-531.

  • Seo, J.H., Hedrick, T.L. and Mittal, R., 2021. Mosquitoes buzz and fruit flies don’t a comparative aeroacoustic analysis of wing-tone generation. Bioinspiration & Biomimetics 16: 046019.

  • Simões, P.M.V., Gibson, G. and Russell, I.J., 2017. Pre-copula acoustic behaviour of males in the malarial mosquitoes Anopheles coluzzii and Anopheles gambiae s.s. does not contribute to reproductive isolation. Journal of Experimental Biology 220: 379-385.

  • Simões, P.M.V., Ingham, R.A., Gibson, G. and Russell, I.J., 2016. A role for acoustic distortion in novel rapid frequency modulation behaviour in free-flying male mosquitoes. Journal of Experimental Biology 219: 2039-2047.

  • Simões, P.M.V., Ingham, R.A., Gibson, G. and Russell, I.J., 2018. Masking of an auditory behaviour reveals how male mosquitoes use distortion to detect females. Proceedings of the Royal Society B: Biological Sciences 285: 20171862

  • Somers, J., Georgiades, M., Su, M.P., Bagi, J., Andrés, M., Alampounti, A., Mills, G., Ntabaliba, W., Moore, S.J., Spaccapelo, R. and Albert, J.A., 2022. Hitting the right note at the right time: Circadian control of audibility in Anopheles mosquito mating swarms is mediated by flight tones. Science Advances 8: eabl4844.

  • Stokes, G., 1851. On the effect of the internal friction of fluids on the motion of pendulums. Transactions of the Cambridge Philosophical Society 9: 8.

  • Su, M.P., Andrés, M., Boyd-Gibbins, N., Somers, J. and Albert, J.T., 2018. Sex and species specific hearing mechanisms in mosquito flagellar ears. Nature Communications 9: 3911.

  • Sueur, J., Mackie, D. and Windmill, J.F., 2011. So small, so loud: extremely high sound pressure level from a pygmy aquatic insect (Corixidae, Micronectinae). PLoS ONE 6: e21089.

  • Tauber, E. and Eberl D.F., 2003. Acoustic communication in Drosophila. Behavioural Processes 64: 197-210.

  • Tischner, H., 1953. Über den gehörsinn von stechmücken. Acustica 3: 335-343.

  • Toma, T., Takara, T., Miyagi, I., Futami, K. and Higa, Y., 2019. Mosquitoes and frog-biting midges (Diptera: Culicidae and Corethrellidae) attracted to traps with natural frog calls and synthesized sounds at Iriomote Island, Ryukyu archipelago, Medical Entomology and Zoology 70: 221-234.

  • Tripet, F., Dolo, G., Traoré, S. and Lanzaro, G.C., 2004. The ‘wingbeat hypothesis’ of reproductive isolation between members of the Anopheles gambiae complex (Diptera: Culicidae) does not fly. Journal of Medical Entomology 41: 375-384.

  • Villarreal, S.M., Winokur, O. and Harrington, L., 2017. The impact of temperature and body size on fundamental flight tone variation in the mosquito vector Aedes aegypti (Diptera: Culicidae): implications for acoustic lures. Journal of Medical Entomology 54: 1116-1121.

  • Warren, B., Gibson, G. and Russell, I.J., 2009. Sex recognition through midflight mating duets in Culex mosquitoes is mediated by acoustic distortion. Current Biology 19: 485-491.

  • Wesenberg-Lund, C., 1920. Contributions to the biology of the Danish Culicidae. A.F. Host & Son, Copenhagen, Denmark, 260 pp.

  • Windmill, J.F.C. and Jackson, J.C., 2016. Mechanical specializations of insect ears. In: Pollack G., Mason A., Popper A. and Fay R. (eds.) Insect hearing. Springer handbook of auditory research, vol 55. Springer, Cham, Switzerland, pp. 125-157.

  • Wishart, G. and Riordan, D.F., 1959. Flight responses to various sounds by adult males of Aedes aegypti (l.) (Diptera: Culicidae). Canadian Entomologist 91: 181-191.

  • Wishart, G., Van Sickle, G.R. and Riordan, D.F., 1962. Orientation of the males of Aedes aegypti (L.) (Diptera: Culicidae) to sound. Canadian Entomologist 94: 613-626.

  • Collapse
  • Expand


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 124 124 11
PDF Views & Downloads 86 86 11