Notes on Editors

Kimberly M. Fornace

is a Wellcome Trust/ Royal Society Sir Henry Dale Fellow at the University of Glasgow and a Visiting Senior Research Fellow at the Saw Swee Hock School of Public Health at the National University of Singapore. From 2006–2010, she worked for the Harvard School of Public Health and was based at the Medical Research Council in The Gambia coordinating a project on environmental risk factors for childhood respiratory diseases. Subsequently, she completed a PhD at the London School of Hygiene and Tropical Medicine in 2018 on the spatial epidemiology of the zoonotic malaria Plasmodium knowlesi. Throughout her PhD, she was the coordinator for a multidisciplinary project in Malaysia and the Philippines on the emergence of this malaria species and described the first links between P. knowlesi risks and deforestation. She currently leads a large project in Malaysia conducting integrated field and mathematical modelling studies to identify new strategies for environmentally targeted disease surveillance and contributes to projects on zoonotic and vector-borne diseases in South America, Africa and Southeast Asia. A key focus of her work is applying novel technologies to monitor socio-ecological systems, using new sources of Earth Observation data, emerging technologies (e.g. acoustic monitoring, mobile applications) and geostatistical approaches to identify the mechanisms underlying disease transmission.

Jan E. Conn

is Research Scientist at the Wadsworth Center, Division of Infectious Diseases at the New York State Department of Health in Albany, New York and Professor in the Department of Biomedical Sciences at the School of Public Health, State University of New York-Albany. Her field is vector biology and population genetics. She earned a MS in entomology from Simon Fraser University in Burnaby, B.C., Canada working on the chemical ecology of mountain pine beetles, and a PhD in population genetics and systematics from the University of Toronto, Canada in 1987. Her doctoral studies took her to Guatemala and Mexico where she conducted field work on the Simuliidae (black flies) that transmit the nematode parasite Onchocerca volvulus, responsible for onchocerciasis in Latin America and Africa. After a Postdoctoral Fellowship at the Universidad Central de Venezuela, Caracas, Venezuela in mosquito population genetics and malaria, and a Postdoctoral Associateship at the University of Florida-Gainesville, she was hired as an Assistant Professor at the Biology Department at the University of Vermont where she was promoted to Associate Professor. Since her move to the Wadsworth Center in 2002, her research has focused on population genomics, entomology and ecology. Her goals have been to broaden and deepen the field of vector biology by combining and integrating these disciplines to be of practical value in moving the field of malaria eradication forward. She has conducted field studies with collaborators in Brazil, Colombia, Panama, Peru and Venezuela, demonstrating the need for an increased focus on the quantification of entomological and ecological parameters locally, and on the underlying broad-scale ecological processes, together with local adaptation, that influence malaria transmission. She has published nine books of poetry, with a tenth, Peony Vertigo, forthcoming from Brick Books (Canada), in the fall of 2023. She is a visual artist, whose work has been shown in Toronto, Albany, NY, and in several cities in Massachusetts. One of her paintings, Turbulence, is on the cover of this book. Please visit www.janconn.com. Her Instagram handle is artistatplay001.

Maria Anice M. Sallum

is a professor in Epidemiology, Ecology in Public Health, and Biology, Ecology and Taxonomy of Culicidae in the School of Public Health at the University of São Paulo, Brazil. She studied at the University of Sao Paulo and obtained her PhD degree in 1994 based on research on the systematics of the Spissipes Section of Culex (Melanoconion) (Culicidae). She continued her education in the United States, with post-doctoral studies in molecular phylogeny of Anophelinae mosquitoes at the Natural Museum of Natural History at the Smithsonian Institution in Washington, DC, and a one-year position as a Senior Visiting Researcher at The Walter Reed Biosystematics Unit, Suitland, MD. Her work there involved the revision of species of the Leucosphyrus Group of Anopheles, subgenus Cellia, with a description of six new species in collaboration with EL Peyton and Rick Wilkerson. Upon her return, she coordinated several projects in biology and systematics of Culicidae with an emphasis on Anophelinae. Later, she expanded her focus on field research to include malaria across the Amazon River basin, with a special focus on ecology, the impact of environmental change on mosquito assemblages and increased risk of acquiring Plasmodium infection. She has a broad background in biology, ecology, and public health, with specific training and expertise in key research areas for vector-borne diseases. During her university career, she has built strong collaborations with other institutions and has an extensive network of national and international collaborators. In 2008, she was awarded with John Belkin Award by the American Mosquito Control Association for her meritorious contribution to biology and/or systematics of Culicidae.

Leonardo Suveges Moreira Chaves

studied biology at the University of Taubaté, Brazil, in 2007, and received a degree in Business Administration from the International Association of Continuing Education (2010). He earned a specialist degree in Environmental Engineering from the School of Engineering of Lorena (EEL-USP) 2010. After this, he obtained both a Masters (2012) and a Doctoral (2018) degree in Sciences from the Department of Epidemiology of the Faculty of Public Health of the University of São Paulo. For his Ph.D. thesis, he carried out field work on the impact of environmental change on the risk of malaria in the Amazon River basin. During his Ph.D. he took a short training in mathematical modeling at the University of Sydney, Australia, with Professor Manfred Lenzen. He was a researcher in the field of medical entomology with a focus in the landscape epidemiology and the ecology of human malaria. He also worked as a consultant in environmental impact associated with anthropogenetic changes in natural ecosystems. He died unexpectedly on January 20, 2023, at the beginning of a productive scientific career, leaving a legacy of important contributions to the field of malaria epidemiology in the Amazon.

James Logan

is a Professor at the London School of Hygiene & Tropical Medicine (LSHTM), United Kingdom and was Head of the Department of Disease Control for 4 years. He is also Co-Founder and CEO of Arctech Innovation, a world-leading innovation centre for breakthrough research, evaluation and commercialisation of new, game-changing products for the surveillance and control of diseases. He is the Principal Investigator of a large research portfolio, investigating novel surveillance and control technologies for diseases including malaria, Zika, dengue, trachoma and Lyme disease. Professor Logan’s research group explores the complex interaction between arthropod vectors, and his ground-breaking research has led to the discovery of novel methods for the control of vectors that transmit pathogens that cause diseases such as malaria, Zika, dengue, trachoma and Lyme disease. His work extends into field evaluation of vector control tools in developing countries. His work also aims to identify and understand chemical signals given off by the human body during infection and use these as biomarkers of diseases for the development of non-invasive diagnostics, and his recent research discovered that malaria infection causes changes in our body odour, making us more attractive to mosquitoes. He’s now working on translating that to develop a novel, non-invasive diagnostic for malaria and other infections. James has more than 150 publications, and is the UK’s leading expert on insect repellents and methods of personal protection against arthropod vectors.

  • Collapse
  • Expand

Metrics

All Time Past 365 days Past 30 Days
Abstract Views 0 0 0
Full Text Views 24 14 1
PDF Views & Downloads 0 0 0