CALL FOR PAPERS:

Special Issue of Multisensory Research on

AUDITORY CONTRIBUTIONS TO FOOD PERCEPTION
AND CONSUMER BEHAVIOUR

Guest Editors:

Prof Charls Spence (University of Oxford)
Dr. Felipe Reinoso Carvalho (Department of Marketing, Los Andes University, Bogota, Colombia)
Dr. Carlos Velasco (BI Norwegian Business School, Norway) &
Dr. Janice Wang (Department of Food Science, Aarhus University, Denmark)

What we hear affects the perception of what we taste, no matter whether we realize it or not. Both music and ambient soundscapes have been shown to bias what we choose to buy/order in shops and restaurants/cafes (Biswas, Lund, & Szocs, 2018; Zellner, Geller, Lyons, Pyper, & Riaz, 2017), typically without us realizing it. Meanwhile, a separate literature has developed over the last decade on the topic of 'sonic seasoning.' This is where music is especially chosen, or composed, in order to correspond crossmodal with the taste / aroma / mouthfeel / flavour (Crisinel et al., 2012; Reinoso Carvalho et al., 2015; Wang & Spence, 2016). Interesting questions here concern where such surprising correspondences come from, and elucidating the conditions under which corresponding vs incongruent (or no music) do, versus do not influence the tasting experience and eating behaviours (e.g., Hauck & Hecht, in press; Höchenberger & Ohla, in press; Lowe, Ringler, & Haws, 2018, Watson & Gunter, 2017), and the neural consequences/underpinnings of such almost-synaesthetic crossmodal interactions (Callan, Callan, & Ando, 2018). A branch of this literature has also examined ‘sensation transference’ effects – addressing questions such as ‘If you like the music more, do you like what you are eating/drinking more too?’ (Kantono et al., 2015, 2016). Auditory inputs that influence the perception of what we taste are not limited to environmental sounds. They also involve the sounds that derived from what we eat such as slurping, crunching, or smacking as well as speech sounds that we use to refer to specific foods (see Spence, 2015, for a review).

When what we hear becomes too loud, it is usually regarded as noise. The research shows that loud background noise, be it airplane noise, white noise, or restaurant noise, can affect both the taste of food and drink, as well as people's ability to discriminate various aspects of their tasting experience (see Spence, 2014, for a review). Given the increasing noise levels in many restaurants and bars these days, there may even be a public health angle to this research. Finally, given the growing literature on music and soundscape's influence on the multisensory tasting experience, there is a growing interest in using technology to synchronize auditory
stimulation with the tasting experience (see Spence, 2019, for a review). This is a rich area for
creative practice (see also The Chocolate Symphony at this year’s IMRF meeting) and
submissions are also welcomed in this area, providing they connect to the multisensory
science.

Hence, despite its inauspicious beginnings 70 years ago (see Pettit, 1958), research on auditory
contributions to food perception and behaviour has exploded in recent years, with interest
coming from the fields of cognitive neuroscience, marketing, food science, design, branding,
public health and beyond. As such, now would seem like an excellent time to capture the
growing interest and excitement in this area with a Special Issue dedicated to the topic.

DEADLINE FOR SUBMISSIONS: 15 January, 2019. Queries regarding the suitability of specific
submissions etc. should be directed in the first instance to Charles.spence@psy.ox.ac.uk.

REFERENCES

 strategy: Effects of ambient music and background noise on food sales. *Journal of the
 Academy of Marketing Science*, 1-19.
- Callan, A., Callan, D., & Ando, H. (2018). *Differential effects of music and pictures on
taste perception – an fMRI study*. Poster presented at the Annual Meeting of the
 International Multisensory Research Forum. June, 14-17th June, Toronto, CA.
 symphony: Systematically modulating the taste of food by changing the sonic
 properties of the soundtrack playing in the background. *Food Quality and Preference*,
 24, 201-204.
 influence of background music on the taste of beverages. *Multisensory Research*.
- Höchenberger, R., & Ohla, K. (in press). A bittersweet symphony: Evidence for taste-
 sound correspondences without effects on taste quality-specific perception. *Journal of
 Neuroscience Research*.
 Listening to music can influence hedonic and sensory perceptions of gelati. *Appetite*,
 100, 244-255.
 effects of acoustic pitch on food preferences and serving behaviour. *Appetite*, 123, 128-
 134.
 preference testing of tomato juice. *Food Technology*, 12, 55-57.

