A social phenomenon can be symbolised as

\[(\alpha) \ A = \{A^r, \ A^p\} \text{ and, similarly, a different social phenomenon can be symbolised as \{B^r, \ B^p\}}\]

where the curly brackets indicate unity and the superscripts refer to the realised and the potential state.

Three points follow. First, \{A^r, \ A^p\} indicates the unity of identity and difference. \(A^r\) is identical to itself but also different from itself, as \(A^p\). \{A^r, \ A^p\} is the synthetic rendition of the ‘affirmative recognition of the existing state of things [and] at the same time, also the recognition of the negation of that state’ (Capital, Volume I, quoted in Zelený 1980, p. 87). It is only by considering the realm of potentialities that the otherwise mysterious unity of identity and difference makes sense. Second, \{A^r, \ A^p\} indicates also the unity of opposites, inasmuch as the potential features of a phenomenon are opposite (contradictory) to its realised aspects. Third, \{A^r, \ A^p\} indicates the unity of essence and appearance (the form of the manifestation of the essence): \(A^p\) is the essence of \(A\), that which can manifest itself in a number of different realisations, while \(A^r\) is its (temporary and contingent) appearance, the form taken by one of the possibilities inherent in \(A\)’s potential nature. Notice however, that
the essence is not immutable but subject to continuous change. Notice also
the temporal dimension: at a certain moment, \(A' \) contains within itself \(A^p \) and subsequently \(A^p \) manifest itself as (a different) \(A' \). The realised phenomenon is temporally prior to the realisation of the potential one. This first principle, then, contains within itself a *temporal dimension*.

On this basis, we can consider mutual determination. Take two phenomena, \(A \) and \(B \). Let \(=> \) symbolise determination and let the direction of the arrow indicate which is the active and which the passive element in that relation. Consequently, when two phenomena are given, \(A \) and \(B \), \(A => B \) indicates that \(A \) is the determinant and \(B \) the determined phenomenon, that is, \(A \) is the realised condition of existence \(B \) and transfers its contradictory social content to \(B \). Let \(A <= B \) symbolise the determination of \(A \) by \(B \), that is, \(B \) is the realised condition of reproduction or supersession of \(A \) because its social content, which it received from \(A \), reacts upon \(A \)'s social content, thus reproducing \(A \) or superseding it. Therefore, the relation of mutual determination is indicated by \(A <=> B \). Given that there is a temporal difference between \(A => B \) and \(A <= B \), the relation of mutual determination becomes

\[(\beta) \ A^{t_1} <=> B^{t_2}\]

where the superscripts \(t_1 \) and \(t_2 \) indicate two points in time. The time-dimension is essential. At \(t_1 \), \(A \) determines \(B \). At \(t_2 \), \(B \) determines \(A \). Dialectical determination takes place within a temporal setting. Given that \(A \) is \(\{A', A^p\} \) and \(B \) is \(\{B', B^p\} \), if we substitute \((\alpha) \) into \((\beta) \) we have

\[(\gamma) \ \{A', A^p\}^{t_1} <=> \{B', B^p\}^{t_2}.\]

Two points should be stressed. First, due to the action of \(B \) on \(A \), \(A \) can reproduce itself but it does so *in a changed form* and not at \(t_2 \) (even less at \(t_1 \)) but at a subsequent point in time, \(t_3 \). Thus, if \(A \) reproduces itself, \(\{A', A^p\}^{t_1} \neq \{A', A^p\}^{t_2} \). After the mutual determination has taken place, the process starts again with \(\{A', A^p\}^{t_1} <=> \{B', B^p\}^{t_4} \). Second, at \(t_1 \), before its realisation at \(t_2 \), \(B^r \) is contained in \(A' \) as one of the many possible \(A^p \). At \(t_2 \), one of the many possible \(A^p \) becomes realised as \(B' \) and this \(B' \) contains within itself a range of \(B^p \). The new \(B' \) and the new \(B^p \) form a new unity, \(\{B', B^p\}^{t_2} \). It is this new unity, \(\{B', B^p\}^{t_2} \), that is a condition of reproduction or supersession of \(\{A', A^p\}^{t_1} \). The typical example is capital that calls into existence labour as the condition of reproduction or of the supersession of capital.