CHAPTER 7

INFINITE DIVISIBILITY IN HUME’S FIRST ENQUIRY

Skepticism and Natural Belief

The relation between Hume’s philosophy in the Treatise and An Enquiry Concerning Human Understanding is controversial. Hume later claims to disown the Treatise, but it is unclear whether by this he means to distance himself from the substance or only the style and mode of argument of his early system. Interestingly, in the Enquiry, Hume combines some of the Treatise criticisms of infinite divisibility, which he develops in a similar direction, but with somewhat different emphasis. To understand Hume’s critique of infinite divisibility and the theory of extensionless indivisibles in the Enquiry, it is necessary to reconstruct its two arguments against infinity, and place them in the context of his preoccupation with the nature of philosophical skepticism in the later work. Then we will be in a position to compare the evolution of his theory of space from the Treatise to the first Enquiry.

Hume’s final thoughts on the divisibility of extension are conveyed almost as asides in notes to paragraphs 124 and 125 of the Enquiry. Here Hume reaffirms his early stance against infinite divisibility. The argument in Enquiry 124 integrates features of the Treatise inkspot experiment and the Treatise reductio argument from the addition of infinite parts. The second argument appears in Hume’s tantalizing partially developed Berkeleyan ‘hint’ about the refutation of abstract general ideas, in the long note to his discussion of the divisibility problem as an objection to ‘all abstract reasonings’ at the end of paragraph
125. Hume asserts that: "... all the ideas of quantity, upon which mathematicians reason, are nothing but particular ... and consequently, cannot be infinitely divisible. It is sufficient to have dropped this hint at present, without prosecuting it any farther."

The Berkeleyan hint in the note on infinity in *Enquiry* 125 is in some ways the most interesting indication of Hume's later ideas about infinite divisibility and the doctrine of sensible extensionless indivisibles. This is partly a result of the fact that it is only a hint; its incomplete statement requires an interpretive effort in imagining how Hume might have wanted to complete the argument. Hume's Berkeleyan hint in the *Enquiry* replaces the *Treatise* inkspot argument as a basis for concluding that there can be no adequate idea of infinite divisibility. Although Hume continues to accept the theory of the experiential origin of ideas in the first *Enquiry*, it is worth noting that in the later writing he allows the refutation of the idea of infinite divisibility and positive theory of sensible extensionless indivisibles to be upheld without appeal to the copy principle by an alternative route suggested by Berkeley’s repudiation of abstract general ideas. Thus, as might be expected, there are continuities and discontinuities in Hume’s thought from the *Treatise* to the *Enquiry* in his early and later critique of infinity.

If Hume devotes less space to the problem of infinity in the *Enquiry* as opposed to the *Treatise*, it need not be because he

91 *Enquiry*, p. 158, n. 1. Waxman in private communication has advised me that Hume’s ‘hint’ does not appear in the first two editions of the *Enquiry*, but replaces the original assertions: “In general, we may pronounce that the ideas of ‘greater’, ‘less’, or ‘equal’, which are the chief objects of geometry, are from being being so exact or determinate as to be the foundation of such extraordinary inferences. Ask a mathematician what he means when he pronounces two quantities to be equal, and he must say that the idea of ‘equality’ is one of those which cannot be defined, and that it is sufficient to place two equal quantities before anyone, in order to suggest it. Now this is an appeal to the general appearances of objects to the imagination or senses, and consequently can never afford conclusions so directly contrary to these faculties.” The argument, as Waxman rightly observes, is directly related to Hume’s observations in *Treatise*, pp. 45-52, and ‘Abstract’, pp. 658-659.