CHAPTER 3

Three-argument Constructions with Non-derived Verbs

This chapter analyzes the behavior of P’orhépecha constructions resulting from non-derived three-argument verbs. The analysis of these data is based on the typological proposal of Haspelmath (2005) and Malchukov et al. (2010) regarding the alignment types exhibited by prototypical three-participant verbs, i.e., verbs of transfer that take an agent (A), a theme (T), and a recipient-like (R) as arguments. According to this proposal, all constructions with this type of verb are considered semantically ditransitive, regardless of the formal expression of the arguments (cf. Dixon and Aikhenvald 2000b, Dryer 2007, Margetts and Austin 2007). Consequently, Haspelmath and Malchukov claim that a language may have more than one type of ditransitive construction (e.g. languages with alternating patterns in the encoding of R). However, as has been stated, in this work the term “ditransitive construction” is restricted to syntactic transitivity, following Margetts and Austin (2007); i.e., it applies only to constructions that exhibit two non-agent arguments encoded in core function (not obliques). Therefore, in discussing P’orhépecha data, “ditransitive construction” and “double object construction” are used as interchangeable terms.

According to Haspelmath (2005) and Malchukov et al. (2010), ditransitive alignment types are established by comparing the properties of the object of monotransitive verbs P, with those of the two non-agent arguments of semantically ditransitive verbs, R and T (cf. Comrie 1982, Dryer 1986, 2007). The formal criteria for determining alignment patterns are based on a distinction between the coding alignment of R and T and the alignment of their behavioral properties. The three most common alignment patterns recognized by these authors are: a) indirective—T and P exhibit the same properties, which contrast with those of R; b) secundative—R and P share properties different from those of T; and c) neutral—T, R and P have the same properties.

The indirective pattern includes cases in which R presents dative properties (dative marking), as well as in which it exhibits oblique properties (flagged by adposition). Therefore, the term indirective alignment is not used to refer to a direct object (DO) versus indirect object (IO) pattern exclusively. What defines this alignment pattern is the contrast between P = T ≠ R (see Malchukov et al. 2010:11–12). The secundative pattern corresponds to the primary object (P = R)/secondary object (T) using Dryer’s (1986, 2007) terms, as well as to
asymmetrical double object constructions (unrestricted object/restricted object), according to the Lexical Functional Grammar (LFG) framework (Bresnan 2001:6). Neutral alignment, in LFG terminology, is present in symmetrical double object constructions.

Concerning the syntactic realization of semantically ditransitive verbs, the coexistence of different alignment types in the same language has been widely documented. This occurs with certain verbs displaying alternating constructions (e.g., dative shift), as well as with verbs exhibiting split constructions due to lexical, semantic, or grammatical factors (see Malchukov et al. 2010, Guerrero and Van Valin 2004, Bresnan et al. 2007, Haspelmath 2007). Furthermore, according to Malchukov et al., ditransitive alignment patterns shown by the coding properties of R and T do not necessarily coincide with those shown by their behavioral properties. In addition, the authors state that not all the coding or behavioral properties of ditransitive constructions in a language necessarily present the same alignment pattern.

In P’orhépecha, non-derived three-argument verbs present two coding patterns and their distribution depends on a variety of factors. In the first coding pattern, R receives oblique marking, resulting in a monotransitive construction in which T exhibits the same coding and behavioral properties as P (P = T ≠ R); i.e., indirective alignment according to Figure 2 in both coding and behavioral properties (P = T ≠ R). In the second, both R and T are encoded in object function, generating a double object ditransitive construction. In this chapter I will argue: a) that most of the coding properties of double object constructions follow a neutral pattern (see discussion in 3.1), but that object encoding by means of enclitics and number agreement of 1st/2nd person objects with plural subjects show a secundative pattern (3.2); and b) that all the behavioral properties of double object constructions are aligned in a secundative pattern (primary object PO versus secondary object SO).

![Figure 2: Ditransitive alignment patterns (Malchukov et al. 2010:5)](image-url)