CHAPTER SIX

BETWEEN BABYLONIA AND JERUSALEM:
THE NATURE AND DATE OF THE CONTACT

6.1 NATURE AND DATE OF THE CULTURAL CONTACT

During the course of the Second Temple period, generations of Jewish authors in created a stable yet dynamic scholarly tradition based on the 364DY and its trajectories. These authors produced a series of calendrical writings around a scientific infrastructure borrowed from Mesopotamian sources and adapted to their specific religious and apocalyptic interests. This imported knowledge played a part not only in the discipline’s early phases but also in its later stages—i.e., in the lunar texts from Qumran.

The Mesopotamian teaching integrated into the Jewish 364DCT did not derive from the civil Mesopotamian calendar but from a more esoteric, ideal calendar whose origin lay in the scientific-scholarly tradition. The fact that the civil Babylonian luni-solar calendar won great popularity in the Ancient Near East is reflected in its adoption by the Persian and Seleucid Empires. This calendar, for example, is the source of the names of the Jewish months, as well as of many other elements of non-sectarian Jewish time-reckoning.\(^1\) In contrast, the evidence from Qumran attests to the existence of a scholarly tradition independent of the imperial administration. Since this scholarly discipline—initially based on the ideal 360-day year but gradually modulating into a 364-day year—was considered secret and esoteric in Babylonia itself, the Jewish scholars who borrowed it evidently had

access to the very heart of the scholarly institution. In Peter Kingsley’s words:

 The transmission was not … a straightforward matter of contact between the periphery of one religion and the periphery of another. On the contrary, the transmission seems to have occurred directly between the heart of one tradition and the heart of another …

While the fact that the Jewish sources acknowledge the number 364 alongside the ideal 360-day year is largely attributable to Jewish septenary trends, the practice also indicates that Babylonian knowledge reached Jewish hands during a period in which the number 364 was still actively employed in Babylonia. We have demonstrated above that this phase of Babylonian astronomy existed for a short period around 700 B.C.E., in close proximity to the final redaction of Mul.Apin.

Albani and Glessmer have shown how Mul.Apin and the type of astronomical reflection it contains constituted a central source of influence on Enochic astronomy. The primary focus of the Enochic authors lay on the system of the twelve heavenly gates and the elements deriving from it: the sun’s position on the horizon, the length of daytime and night time, and periods of lunar visibility. This information is contained in the water-clock section and in the “intercalation schemes,” the sections of Mul.Apin which most closely resemble AB.

In the present work we have paid particular attention to the traditional Babylonian models of lunar visibility. Constituting an elaboration of the water-clock formula, these models are contained in tablet 14 of Enûma Anu Enlil and section l of Mul.Apin. Drawnel’s recent contribution has made it possible to demonstrate how the Aramaic models of lunar visibility contained in 4Q208 and 4Q209 adopted the traditional Babylonian system and modified it to fit their specific needs. As in Mul.Apin, the lunar data was merged together with other branches of astronomy and meteorology.

The material relevant to this cultural transfer came into use in Mesopotamia in the eighth–seventh centuries B.C.E., circulating up until the Hellenistic period and beyond, well after Babylonian scholars were already in possession of improved models. The transfer of