THE DISCRETE NATURE OF SYNTACTIC CATEGORIES: AGAINST A PROTOTYPE-BASED ACCOUNT

FREDERICK J. NEWMEYER

Department of Linguistics
University of Washington
Seattle, Washington

1. PROTOTYPES, FUZZY CATEGORIES, AND GRAMMATICAL THEORY

1.1. Introduction

There are many diverse approaches to generative grammar, but what all current models share is an algebraic approach to the explanation of grammatical phenomena. That is, a derivation consists of the manipulation of discrete formal objects drawn from a universal vocabulary. Foremost among these objects are the syntactic categories: NP, V, S, and so on. The inventory of categories has changed over the years and differs from model to model. Likewise, their distribution has been constrained by proposals such as X-bar theory, feature subcategorization schemes, and the current (albeit controversial) distinction between lexical and functional categories. Nevertheless, what has remained constant, for the past two decades at least, is the idea that among the primitives of grammatical theory are discrete categories whose members have equal status as far as grammatical processes are concerned. That is, the theory does not regard one lexical item as being “more of a noun” than another, or restrict some process to apply only to the “best sorts” of NP.

This classical notion of categories has been challenged in recent years by many
working within the frameworks of functional and cognitive linguistics (see especially Comrie, 1989; Croft, 1991; Cruse, 1992; Dixon, 1977; Heine, 1993; Hopper and Thompson, 1984, 1985; Langacker, 1987, 1991; Taylor, 1989; Thompson, 1988). In one alternative view, categories have a prototype structure, which entails the following two claims for linguistic theory:

(1) **Categorial Prototypicality:**
 a. Grammatical categories have “best case” members and members that systematically depart from the “best case.”
 b. The optimal grammatical description of morphosyntactic processes involves reference to degree of categorial deviation from the “best case.”

Representatives of both functional linguistics and cognitive linguistics have taken categorial prototypicality as fundamental to grammatical analysis, as the following quotes from Hopper and Thompson (leading advocates of the former) and Langacker (a developer of the latter) attest (I have added emphasis in both passages):

> It is clear that the concept of prototypicality (the centrality vs. peripherality of instances which are assigned to the same category) has an important role to play in the study of grammar. Theories of language which work with underlying, idealized structures necessarily ignore very real differences, both cross-linguistic and intra-linguistic, among the various degrees of centrality with which one and the same grammatical category may be instantiated. (Hopper and Thompson, 1985: 155)

> How then will the theory achieve restrictiveness? Not by means of explicit prohibitions or categorical statements about what every language must have, but rather through a positive characterization of prototypicality and the factors that determine it. . . . The theory will thus incorporate substantive descriptions of the various kinds of linguistic structures with the status of prototypes. (Langacker, 1991: 513–514)

These approaches attribute prototype structure to (virtually) all of the constructs of grammar, not just the syntactic categories (see, for example, the treatment of the notion “subject” along these lines in Bates and MacWhinney, 1982; Langerdonck, 1986; Silverstein, 1976; and Van Oosten, 1986). However, this chapter will focus solely on the syntactic categories.

Another position that challenges the classical approach to grammatical categories is that they have nondistinct boundaries:

(2) **Fuzzy Categories:** The boundaries between categories are nondistinct.

My impression is that the great majority of functionalists accept categorial prototypicality, and a sizable percentage accept fuzzy categories. Comrie (1989) and Taylor (1989), for example, are typical in that respect. However, Langacker