CHAPTER 1

Between a Rock and a Hard Place
Climate, Weather and the Rise of the Lordship of the Isles

Richard D. Oram

The fact of a MacDonald ‘rise’ and the seemingly inexorable spread of their power out of the southern Hebrides in the fourteenth century is a central theme in much Scottish historical writing of the nineteenth and twentieth centuries. Until the 2000s, that narrative of the rise and fall of the Lordship of the Isles was presented as an almost exclusively political phenomenon and often stridently deterministic in associating the processes with the socio-political dislocations and governmental discontinuities that arose from the Wars of Independence, often coloured by inter- and infra-dynastic rivalries. It is a narrative, moreover, that is dominated by instances of opportunity and opportunism, where able and ambitious individuals could manoeuvre in the liminal zones between polities in crisis to construct personal empires. More recent discussion of the spread of MacDonald power and the territorial extension of their domain and the powerbases of the principal kindreds associated with them has turned towards exploration of environmental factors which might have stimulated that spread.1 In particular, new emphasis is being placed on the changes in weather patterns which came with the end of the long period of climatic amelioration and more benign weather now known by climatologists as the Medieval Climate Anomaly that had prevailed across the North Atlantic region since the ninth century. The argument is not that changing environmental conditions caused the rise of the Lordship of the Isles but that they contributed to a range of socio-economic opportunities, pressures and threats which enabled the expansion to occur. Nor is it argued to have been a quick development in response to any single event, no matter how extreme, but to have arisen through a gradual change in the conditions which had prevailed down to the later thirteenth century.

Traditional historical approaches to research into the socio-economic fabric of medieval Hebridean life and to the climatic/environmental factors that affected it are handicapped by the paucity of surviving contemporary and indigenous documentary records. With the exception of the extensive corpus of church-related material preserved mainly in the Vatican archives and the surviving charters issued by the Lords of the Isles in the fourteenth and fifteenth centuries, the majority of written sources concerned with the Western Isles were produced externally, some in mainland – principally lowland – Scotland, but the bulk in Ireland. The absence of significant documentary records is offset by the availability of proxy environmental measures which can provide a long-term perspective on past climate trends. Advances in understanding of the medieval North Atlantic climate are a happy consequence of late twentieth- and early twenty-first-century research into contemporary climate change, much of it focused on the northern North Atlantic periphery and Greenland in particular. Using a variety of different proxies including ice-core, ocean sediment and tree-ring data, climatologists have reconstructed a series of records that illustrate weather patterns around the region down to decadal and in some cases annual scale, and from these can model the more general climatic and oceanic trends that produced those weather patterns. In their fine-grained detail, these data are region-specific; nevertheless a synthesis of different data can be used to illustrate likely climatic changes across wider regions and longer chronologies. There is a further caveat that few of these proxies are ‘native’ to the Hebrides; the closest data in regional terms is the benthic foraminiferal oxygen isotope sequence from Loch Sunart, followed by the Irish oak tree-ring series. This near absence of regionally-specific data makes it imperative that multiple proxies are synthesised to produce a nuanced model that allows for such factors as the buffering of long-term climatic shifts in the Western Isles by the tempering effect of its oceanic regime. The model should also recognise that year-on-year seasonal differences i.e. summer vs. winter are known to have had a significant impact on landscape management in other places around the North Atlantic periphery. Variation of this type, evidenced from historical