In the 16th century Philibert De l’Orme was the first architect in France who occupied himself not only with building objects, but also with explaining his difficult work in detail, providing background information on stone masonry, stereotomy and a great deal of geometrical knowledge. In the fourth book of his treatise Premier Tome de l’architecture which appeared in 1567, he described a number of architectural objects, including the squinch of Anet. In 1988 Jean-Marie Perouse de Montclos prepared a new edition of De l’Orme’s Traité d’architecture [1]. Volker Hoffmann was the first in Germany to concern himself with this treatise more intensively. De l’Orme’s text and drawings address not only the world of scholars, but also the practical working craftsmen like the “appareilleurs” ([2] 7 and 235).\(^1\)

The squinch of Château Anet was a point of great interest in architectural history because the geometrical construction drawings are presented and even explained by the architect. With this treatise De l’Orme created a work of great importance, since he showed us how to construct a difficult three-dimensional object. In this regard he had no predecessors, but a few interested followers like François Derand, Jean-Baptiste De la Rue and Amédée-François Frézier. With De l’Orme’s treatise the French word trompe, in English squinch, was used for the first time to characterize a vault system that supports a part of a building. In his treatise De l’Orme described several different types of squinches for example the most popular as the trompe quarrée ([1] 100).

\(^1\) The “appareilleurs” are the workers who choose the stones that are cut by the “tailleur de pierre.”
Later theoreticians developed more than a dozen ingenious and extremely complicated variations on the theme, including for example, what was called the *trompe de Montpellier*.\(^2\) The only type I would like to discuss here is the *trompe ondée et rampante*, the wave-like and inclined squinch of Château Anet. The technical function of a squinch in De l’Orme’s sense is to create a self-supporting system to shore up an oriel above. For him the theoretical aspect of the stone masonry, which the French called “*stéréotomie*,” was the most interesting thing. As he tells us, he was aware of several methods to support an oriel with iron or wooden construction elements inside the squinches, but for him stone masonry and the concentric commissures here constitute an ingenious construction method ([1] 90a). De l’Orme was one of the first who was no longer a craftsman in the medieval sense but an architect with considerable geometrical know-how.

Therefore he developed for the squinch of Anet four geometrical drawings that provide instructions for how to cut each individual stone in the complex piece of vault. These four drawings are connected to

\(^2\) The “*trompe de Montpellier*” is the most common squinch built between two rectangular walls with a conical vault and a quarter circle ground plan explained for example in [3] or [4].