Introduction
At a local level, farming and land-based livelihoods are linked to the particular natural resources that are available. The description and characterisation of these resources and their limitations provide the bio-physical context in which farming and land-based livelihoods need to be understood. This chapter starts with a description and characterisation of the agro-ecology of the central Eastern Cape, and proceeds with a generalised description of how these natural resources are used, with special emphasis on farming. This description follows the historical subdivision of the central Eastern Cape into the former Border and Ciskei regions, because important historical differences in terms of farm size and land use persist. The last part of the chapter presents a detailed description of natural resources, land use and farming in the historical Ciskei region, because both Guquka and Koloni form part of it.

Agro-ecological regions
The central Eastern Cape covers an area of about 18,024 km2, and incorporates two historical regions, namely the Border region immediately west of the Great Kei river covering 9924 km2 and the former Ciskei 8100 km2. Roughly, it has
the Kat and lower Fish River as its western boundary and the Great Kei and Black Kei rivers as its eastern and northern boundary. In the south it borders the Indian Ocean (see Map 1.1).

The central Eastern Cape can be subdivided into five major land units. Four of these are encountered when travelling from the coast in a northern direction, namely the Coastal Belt, the Coastal Plateau, the Amatola and Winterberg Mountains, and the Midland Plateau. The valleys of the major river systems that cut through these four units make up the fifth unit.

The Coastal Belt

Stretching about 30 to 40 km inland, the Coastal Belt rises rapidly from sea level to an altitude of about 100 m, and thereafter gradually to an altitude of about 300 m at the boundary with the Coastal Plateau. Numerous steeply incised river valleys dissect it, causing intense relief at local level. Mean annual rainfall increases from 624 mm at Fish River Point in the southwest to about 850 mm in the northeast. The Coastal Belt receives most of its rain during summer, but the influence of cold fronts sweeping the southern edge of the continent, predominantly a winter phenomenon, causes approximately 40% of the rain to fall in winter. Moderated by the Indian Ocean, the climate is frost-free. Mean daily minimum temperature is between 17 and 18°C in January and about 10°C in July, but extreme minimum temperatures as low as 3°C have been recorded (Marais 1975). Land and sea breezes commonly occur, but they may be superseded by westerly winds, which are described as persistent, strong and disagreeable (Marais 1975). The climate is suitable for year-round production of a range of crops, including selected sub-tropical fruits, of which pineapples are the most common.

Soils are generally shallow and often prone to water logging, especially those situated on level crests and valley bottoms. Cultivation occurs mainly on the valley slopes. Soils on valley slopes usually show evidence of leaching, and have an acid reaction. They appear to resist erosion, enabling their cultivation on gradients exceeding 20% without excessive loss of soil, at least during the initial years. The natural vegetation is dominated by Coastal Mixed Grassveld and Acacia Savanna, and the numerous steeply sloping river valleys are covered with Valley Bushveld. The use of natural vegetation mainly involves beef production. Around East London dairy farming on planted pastures is common.

The Coastal Plateau

Geomorphologically, the Coastal Plateau is a continuation of the Coastal Belt, rising gradually from an altitude of 300 m in the south, and reaching altitudes between 700 m and 900 m at the edge of the Amatola and Winterberg mountain ranges. Climatically, the plateau differs from the Coastal Belt. The influence of the Indian Ocean is less pronounced, making it hotter in summer and colder in winter. The proportion of rain falling in winter is typically between 20 and 30%. The rainfall pattern can be described as bimodal, because a mid-summer dry