KALUZA’S LAW IN THE OLD SAXON HELIAND

by Seiichi Suzuki, Kansai Gaidai University

Abstract

Observed most closely in Beowulf, Kaluza’s law is a constraint on operation of resolution in Old English meter: after a stressed syllable, only short disyllables ending in pre-OE *-i or *-u (-VCiS or -VCuS) are subject to resolution, thereby constituting a single position; by contrast, the remaining disyllables (-VCVS – where the final V ≠ pre-OE *-i or *-u – or -VCVCS) count as two metrical positions through suspension of resolution. This paper examines the treatment of Kaluza’s law in the Old Saxon Heliand in comparison with Beowulf and late Old English poetry. Drawing on statistical analysis as appropriate, I will argue that, no longer sensitive to the original distinction between short and long disyllables, the law was replaced by another generalization that was predicated on the distinction between open and closed disyllables: in the Heliand, open disyllables (-VCV) are susceptible to resolution, whereas closed ones (-VCVCS) are immune to it. I will then identify a complex of metrical, phonological, and morphological factors that can be held responsible for the metrical reorganization in question: (i) loss of type A2a; (ii) diminished use of poetic compounds; (iii) leveling of unstressed vowels; (iv) reduced functional load of high vowel endings; (v) analogical loss of the original alternation between -i/-u and zero; (vi) extensive occurrence of vowel epenthesis.

1. Introduction

In this article, I will argue for the reorganization of Kaluza’s law in the Old Saxon Heliand (Behaghel & Taeger 1996) through a comparison with Beowulf (Fulk, Bjork & Niles 2008) and late Old English poetry (Dobbie 1942), and identify a complex of metrical, phonological, and morphological factors that would have brought

\[1\] The following symbols and abbreviations will be used in this paper:

- \(V\) = vowel; \(C\) = consonant; \(\$\) = syllable boundary;
- \(P\) = long primary-stressed syllable; \(p\) = short primary-stressed syllable;
- \(S\) = long secondary-stressed syllable; \(s\) = short secondary-stressed syllable;
- \(X\) = long unstressed syllable; \(x\) = unstressed syllable of unspecified length, or short unstressed syllable when used explicitly in opposition to \(X\);
- \(/\) = lift; \(\\) = heavy drop; \(\times\) = normal drop;

Beo = Beowulf; Hel = Heliand.
about the restructuring in Old Saxon. Kaluza’s law is a constraint on
operation of resolution in Old English meter, particularly in the meter
of *Beowulf* (for an illuminating state-of-the-art report on Kaluza’s law,
see Cable 2003). Resolution is a metrical process that fills a strong
position – lift or heavy drop – with a disyllabic sequence of a short
stressed syllable and an unstressed one (px), instead of a long stressed
monosyllable (P). Predicated on the distinction between ‘short’ and
‘long’ disyllables, Kaluza’s law specifies the conditions for imple-
mentation and suspension of resolution in the contexts where a resolv-
able disyllable is immediately preceded by a stressed syllable.

Concerning the basis of distinction between short and long disylla-
bles, there are two accounts standing in rivalry. On the one hand, the
distinction involved is claimed to be based on vowel quantity in pre-
Old English, which can ultimately be ascribed to the Proto-Germanic
opposition between stressed and unstressed endings (or those with
circumfl ected and plain vowels, respectively), as originally proposed
According to this account, the long disyllable ends in a consonant or a
long vowel in pre-Old English (a closed syllable), whereas the short
one is characterized as ending in a short vowel (an open syllable). On
the other hand, the distinction is attributed to that of vowel quality,
whereby short disyllables end in pre-OE */-i/ or */-u/ while long ones
comprise all remaining disyllabic strings, as claimed first by Bliss
(1967: 27-35, 118-121) and subsequently refined by Suzuki (1996:
205-238). On either view, however, it remains true that Kaluza’s law
restricts resolution to the least prominent disyllables and conversely
blocks the minimally sonorous syllables – those ending in i/u or
short vowels in general – from constituting metrical positions on their
own through suspension of resolution. The critical difference between
the two accounts concerns the identification of the minimal disyllable,
ending in a short vowel in general (-VCV) or in a high vowel in
particular (-VCi or VCu). Although these two views are largely
equivalent as shown in detail by Hutcheson (2004), I will stick to the
second interpretation throughout this article, and offer some
justification for this choice in note 2 below.

Apart from the basis of distinction, the metrists also hold different
views on the scope of Kaluza’s law (Suzuki 1996: 205-207). Ignoring
minor contexts of verse-internal positions (except for the second posi-