The region North Patagonia has numerous kinds of native forests with associated wetlands, shallow ponds (Correa-Araneda et al., 2011) and pristine lakes (Steinhart et al., 1999, 2002). Many of these ecosystems are difficult to access physically, due to the rough terrain of the surrounding mountains, which are accessible only by travelling, largely on foot, over long mountain paths (De los Ríos-Escalante et al., 2012). The present study is based on a report of microcrustaceans in four water bodies located inside a private protected area called Parque Tagua Tagua (fig. 1). The site can be accessed sailing by boat over a lake also called Tagua Tagua, that belongs to the system known as the Puelo lake and river basin. This system extends over territories of the countries Argentina and Chile, and encompasses numerous lakes and rivers in the mountain zone, invariably with difficult access (Niemeyer & Cereceda, 1984).

The water bodies here reported upon are located on sites that can be reached after, respectively, walking 4 and 8 km along heavy mountain paths inside Fitzroya cupressoides (Molina) Johnston forests. The studied sites thus investigated were the pool named Quetro Laguna, in the farthest and highest part of the mountain paths, two adjacent wetlands (Wetland 1 and Wetland 2), and the pool Alerces Laguna, that is located halfway the mountain path (table I). For each of the sites studied, total dissolved solids (TDS), conductivity, and temperature were measured in situ with a Hanna sensor, and zooplankton samples were collected by filtering 40 litres of water over a 100-μm mesh plankton net according to the methods of

5) Corresponding author; e-mail: prios@uct.cl

© Koninklijke Brill NV, Leiden, 2014
DOI:10.1163/15685403-00003350
Fig. 1. Aerial image of Tagua Tagua Park, with the sites studied indicated: 1, Wetland 1; 2, Wetland 2; 3, Quetro Laguna; 4, Alerces Laguna.

Soto & De los Ríos (2006). The zooplankton was identified with the aid of the work of Araya & Zúñiga (1985).

For Quetro Laguna we report the microcrustacean *Chydorus sphaericus* (O. F. Müller, 1785) (Branchiopoda, Cladocera, Chydoridae) and copepodites of an unidentified cyclopoid copepod (Copepoda, Cyclopoida), while for Wetland 1 we found *Daphnia ambigua* Scourfield, 1947 (Cladocera, Daphniidae), for Wetland 2 both *Ch. sphaericus* and *D. ambigua*, and in Alerces Laguna we found all three groups, i.e., the two species of cladocerans mentioned, as well as the juvenile stages of the unidentified cyclopoid. The lowest abundance of microcrustacean zooplankton was found in Quetro Laguna and Wetland 1, and the highest in Alerces Laguna (table I).

The results obtained agree with literature descriptions for Andean mountain shallow wetlands, where it is possible to find a high dominance of daphnids, due to high chlorophyll *a* concentration, such as observed in ephemeral pools in Cañí Park at 39°S (De los Ríos & Roa, 2010). Other reports, based on the presence or absence of species, testified that it is possible to find daphniids in ephemeral pools in native forests in the range of 39-41°S (De los Ríos et al., 2007; De los Ríos-Escalante et al., 2012). However, according to the owner of the private protected