THE CERTAINTY OF SKEPTICISM

Paul OPPENHEIMER and Ralf MEERBOTE
[University of Illinois at Chicago Circle]

In a recent paper1 L.S. Carrier puts forward for consideration the following skeptical argument (SA):

\[
\begin{align*}
(0) & \ K_A \rightarrow P \text{ is not mistaken that } p \\
(1) & \ K_A \rightarrow K_A \text{ (A is not mistaken that } p) \\
(2) & \ (e) \ (\sim K_A \text{ (A is not mistaken that } e)) \\
(3) & \ (e) \ (\sim K_A e),
\end{align*}
\]

where 'e' in (2) and (3) ranges over empirical statements.

Carrier professes to be able to find nothing wrong in accepting (2) as true and indeed suggests that it ought to be equally easy for both a skeptic and an anti-skeptic to accept. His confidence on this point appears to be mainly due to his unexamined view that "no amount of empirical evidence...is enough to rule out [a] mistake"2 and he is even prepared to accept (2) as true for the reason that it "spell[s] out what is involved in saying that a [statement] is empirical."3

At the same time, Carrier does not wish simply to assert that nobody ever possesses any empirical knowledge. He therefore attempts to distinguish sharply between knowing that 'e' and knowing that one is not mistaken that 'e'. The intended result of this attempt is that (1), with 'e' substituted for 'p', can be false. Since according to Carrier the only plausible ground for ever accepting (1) is furnished by what he calls the Janus Principle (JP):

\[
K_A P \rightarrow (K_A (K_A \rightarrow q) \rightarrow K_A q),
\]

together with A's knowing that (0), he concludes that in this sense the acceptance of JP leads to the acceptance of (1) and thereby of

SA and that therefore the (only) way of resisting SA is to resist (1) and with it JP.

We believe that the way in which Carrier attempts to argue that (2) is true but (1) might be false (unless made true by JP) fails in an instructive manner. We will show that there is one interpretation, relied on by him, of what is meant by knowing that one is not mistaken that e (henceforth 'K_A^-M_Ae') according to which (1) may very well be true (but not because of JP) but which yields the falsity of (2), and another interpretation, also relied on by him, which indeed may make (2) true but at the cost of making (1) false in a way not remediable by JP, even if additional assumptions, briefly alluded to at the end, are made. In either case, SA would not go through and JP (with knowledge that (0)) could not be blamed for skepticism. In short, we propose to ascribe an ambiguity to Carrier in his use of '~M_Ae' and hence of 'K_A^-M_Ae' and to construct a dilemma for him, both horns of which have SA go down to defeat quite independently of any possible help on the part of JP.

I. (1) is true and (2) is false.

Even if (1) is true, Carrier distinguishes between 'K_Ae' and 'K_A^-M_Ae' in the following way. He interprets 'K_A^-M_Ae' to be stronger (to assert more) in that deductive closure (DC)4 could be used effectively in favor of skepticism with regard to it but not with regard to 'K_Ae'.

'K_A^-M_Ae' is said by him to be equivalent to an indefinitely long conjunction each of whose conjuncts state that A knows that a particular way of being mistaken with regard to 'e' is not actualized. Strictly speaking, this is incorrect, but, to bring out his argument, we shall grant him the equivalence

\[K_A^-M_Ae \rightarrow K_A (\sim p_1 \& \ldots \& \sim p_n). \]

By a "way of being mistaken" Carrier means something which entails that there is an alternative to 'e', that is, some 'p' such that

4. For a good statement of DC and of how it may not be of use to the skeptic, see G. Stine, "Skepticism, Relevant Alternatives, and Deductive Closure", *Philosophical Studies*, 29, pp. 249-261. DC differs from JP in that it substitutes 'K_A(p \rightarrow q)' for 'K_A(K_Ap \rightarrow q)'.