CRITERIA FOR JUSTICE

Franz von KUTSCHERA
Universität Regensburg

Criteria for justice today are mostly discussed within the formal framework of social welfare functions (SWF) developed by K. Arrow in (51). ¹ This is also what I shall do in this paper.

Let Z be a set of states, $I=\{1, \ldots, n\}$ a set of persons, and let there be defined a utility function u_i for each of these persons on Z.² If u is the n-tuple (u_1, \ldots, u_n), a SWF is a function that assignes to each u on Z a quasi-ordering $R(u)$ on Z.³ If x,y,z, \ldots are states in Z we read "$xR(u)y$" as "x is socially not better than y", and set $xP(u)y := xR(u)y \land \neg(yR(u)x)$ — "y is socially better than x" — and $xG(u)y := xR(u)y \land yR(u)x$ — "x and y are equally good socially".⁴

Besides the postulates of unrestricted domain ($R(u)$ is to be defined for all possible u's on Z) and of invariance with respect to common positive linear transformations of the u_i,⁵ the minimum requirements for such SWF's are:

Anonymity: $R(u)$ is to be invariant with respect to permutations of the indices $1, \ldots, n$,

and the (strong)
Pareto Conditions: $\forall i \ (u_i(x)=u_i(y)) \supset xG(u)y$

$\forall i \ (u_i(x) \leq u_i(y)) \land \forall k \ (u_k(x) < u_k(y)) \supset xP(u)y$.

Both conditions seem to me essentially unproblematic, but do not

¹ A good exposition of this theory is Sen (70).
² Such utility functions are metrisations of subjective preferences on Z; they are uniquely determined up to positive linear transformations.
³ $R(u)$ need not be a total ordering, though that is mostly stipulated.
⁴ For simplicity we only discuss SWF's here that are defined on utility functions, not on preference relations. The latter are devoid of deeper interest anyhow.
⁵ We shall not go into the problem of interpersonal comparisons of utilities here. Cf. Harsanyi (55), (75) and Sen (70), ch. 7.
suffice to determine one single SWF6, and all further postulates are hotly disputed.

In moral philosophy SWF’s are mostly employed in the setting of ethical subjectivism to define a comprehensive ordering of moral values from individual preferences. Against such a conception there are, however, serious objections which I shall mention only briefly here:7

1. In order to make morally prescribed actions rational one has to adapt one’s individual preferences to the moral one, expressed by a SWF $R(u)$. But since the original utility functions u are the basis of the moral ranking $R(u)$, and adapting one’s preferences to $R(u)$ means going over to some u', $R(u')$ may contradict $R(u)$, so that orienting one’s preferences towards moral criteria may upset the social ordering of the states. If, however, the individual preferences from which the social one is defined are only to express the Eigen-interests of the participants, i.e. the interests they would have on the assumption that all the other people concerned were indifferent between the states in Z, one does not take factual altruistic interests of the participants into account but only their egoistic ones. It would be forbidden then to forgo advantages in favor of others.

2. Not all factual interests are to be respected from a moral point of view. Even if somebody has the ardent desire to exploit another person, suppress or torment him, this has not to be reckoned up against legitimate interests of others.

3. R. Nozick has emphasized in (74) that criteria of structural justice like SWF’s measuring the justness of a state only by how the people concerned are situated in it are inadequate at least as general criteria for justice. His main argument is this: Such principles would eliminate all freedom: the freedom of control over one’s property, the

6. Harsanyi has shown in (55) that the utilitarian SWF $xR(u)y := \sum_{i} u_i(x) \leq \sum_{i} u_i(y)$ is the only one to satisfy the postulates stated above, if the u_i and $R(u)$ are not only defined on Z, but on the power set of Z according to the principle $u_i(X) = \frac{1}{w(X)} \sum_{x \in X} u_i(x) w(x)$ for $X \subset Z$. To assign probabilities to the states of Z, however, is problematic, for the states of Z are generally results of actions. While assigning probabilities to one’s own actions in decision problems is not problematic, as Jeffrey has shown — the decision criteria do not depend on these probabilities —, this is not true for games in which several persons are acting.

7. For a more detailed discussion cf. Kutschera (77).