Propositions and operations both play a central role in the Philosophy of Logic as set out in Wittgenstein's *Tractatus*. The general propositional form is amply treated of both in the work itself and in the substantial secondary literature. The general form of an operation, on the other hand, has, to the best of my knowledge, received no scholarly attention and it is dealt with only in thesis 6.01 and its preamble 6.002. Accordingly it is the purpose of the present paper to discuss the proper interpretation of this thesis which reads:

Die allgemeine Form der Operation Ω' ($\bar{\eta}$) ist also: $[\xi, N (\xi)]' (\eta)$

$= [\overline{\eta}, \xi, N (\xi)]$.

Das ist die allgemeinste Form des Überganges von einem Satz zum anderen.

In view of 6.002, the general propositional form will have to be explained, as well as the notion of an operation. Furthermore, certain

specifically Tractarian notational devices demand clarification. Inspection of thesis 6.01 shows that we have to deal with at least the following:

- the joint negation operation N
- the elevated comma
- the equality sign
- round Klammerausdrücke
- square Klammerausdrücke with two, respectively, three arguments
- the bar notation.

Owing to the firm internal cohesion of the Tractatus, though, the required explanations will have to touch upon a considerably wider range of matters.

Our first task is to treat of the formal concept operation. It is introduced in the course of an alternative description of the Formenreihen. Originally, in thesis 4.1252, a series of forms is explained as a series ordered by an internal relation. This explanation permits two readings: one Russellian and one Fregean. The former is, prima facie, the natural one: the internal relation itself is a strict ordering of the terms in the series, that is, a series also in the terminology of Principia Mathematica. The Fregean option, on the other hand, renders 'is ordered by' as gets its order from. Thus the sequence of terms itself is a PM-series, but the internal relation is not an ordering relation for the series; it only generates such an ordering.

In view of the alternative characterization of the notion of a Formenreihe offered in thesis 4.1273 the Fregean reading deserves preference. There a series of forms is determined by laying down its first term and a general operation producing the next term from its predecessor. Thus the terms of the series S, with order generated from the internal relation Ω, can all be obtained through successive

3. The English translations offered in the editions mentioned in f.n. 1 are, respectively, formal series and series of forms.