The following lines are written in search for new techniques of literary criticism: they may be fairly elementary, but far too little work has been done on the classical literature of Sanskrit in Europe, especially English during the last forty years. We hope therefore for a hearing with the following.

In Indian literature, many works are composite or interpolated. Style is often impersonal, or at least, very little work has been done on the peculiarities or idioms of authors, compared to what has been normal on Classical or European writers. It would therefore be desirable to be able to disentangle various hands and strata in composite works, and we seek here to show that preferences of vipulas in anuṣṭubh ślokas do give some indications.

In Classics or English, different poets, or even one poet at different times, prefer different rhythms in the same metre. This ought to be so also in Sanskrit. In the 2nd foot of the śloka there are 8 possibilities of scansion (the last syllable being indifferent, long (−) or short (⋆)). We can have:

\[
\begin{align*}
\star & - - - \ P \ (\text{pathya}) \\
- & - - - \ M \ (\text{molossus}) \\
- \star - - & X \ (\text{choriambus}) \\
\star & - - & \Pi \ (\text{paean}) \\
- & \star - & T \ (\text{trochee}) \\
\star & - - & \text{I min. (Ionicus a minore)} \\
- & - & \text{I maj. (Ionicus a majore)} \\
\star & - & D \ (\text{diambus})
\end{align*}
\]

These names may not be very good, as they define the 4th syllable; but as we are considering their statistics, not the nature of the scansion, the symbols derived will do excellently.

In the following, the numbers of each such scansion (vipula) are always
given in that order, except that the pathya P is usually left out; but wherever a figure for pathya is given, it is always followed by the symbol P. The numbers of non-P in relation to one another make what we call the vipula-pattern: their total in relation to the number of pathyas, P, give the vipula-figure. The pattern is far more significant than the figure, and we have come to this conclusion after scanning over a lakh 100,000, lines (half-ślokas).

I min., I maj. and D we call the bad vipulas.

Some provisos must be made. Firstly we must be prepared to work in Sanskrit on far weaker probabilities than would be justified elsewhere, as our evidence is always so much less. Secondly, vipula-evidence is statistical evidence, with all the usual shortcomings of such, and indicates probabilities only. For instance, one cannot prove anything on 10 lines – he would be lucky to get a right indication: e.g. in Nāgārjuna’s Madhyamikakārikās, in chapter 9 we have a pattern of $19P/4 \cdot 0 \cdot 0 \cdot 0 \cdot 0 \cdot 1 \cdot 0$. One I maj. does not prove this kārikā an interpolation, even though there is no other in the whole work: nor does the absence of all other vipulas than M, even though they are similarly absent only in chapter 14, which has a pattern $13P/3$. Rejection of short passages would have to be on other than metrical grounds, though metrical evidence might then be used as supporting evidence. It must be very clear in itself to make a strong probability.

One key word may vitiate a pattern in a short passage, or at least obscure it; e.g. in the Isibhāṣyā 33 we have a pattern of $27P/5 \cdot 1 \cdot 0 \cdot 0 \cdot 1 \cdot 0$. In no other adhyāya is there such a predominance of M; but the predominance disappears when we see that one line is repeated thrice, so the real pattern is $2 \cdot 1 \cdot 0 \cdot 0 \cdot 1$.

The vipula-pattern is not often obliterated by interpolations: it may well be obscured: e.g. the uncorrected figures for the Ambā story in MBh. V 170–93 is $1122P/64 \cdot 58 \cdot 89 \cdot 17$. Corrected (i.e. minus interpolations) it is $957P/56 \cdot 52 \cdot 77 \cdot 13$, which sums interpolations as $8 \cdot 6 \cdot 12 \cdot 4$. Though this pattern is similar to that of the main work, there were probably 2 interpolators, and their figures, that total that same pattern, are very different, 4 (possibly $3) \cdot 3 \cdot 10 \cdot 4$ and 4 (possibly $5) \cdot 3 \cdot 2 \cdot 0$. II & T are much more favoured by the first interpolator than by the author. Or we may look at the Gitā. Its total pattern is $1140P/26 \cdot 35 \cdot 61 \cdot 28 \cdot 1$. This is the true pattern for the Gitā, but if we remove the interpolations, BhG. 13–7 & 18–13–28, it comes out much clearer, $14 \cdot 30 \cdot 49 \cdot 18 \cdot 1$, while the interpolations show $11 \cdot 5 \cdot 12 \cdot 10 \cdot 0$, which is markedly different.