This article will present a particular contribution of Merleau-Ponty's work in relation to contemporary cognitive psychology. Specifically, Merleau-Ponty's phenomenology of consciousness helps to overcome conceptual problems at the heart of the current cognitivist theory of thinking as information processing.

Merleau-Ponty's work provides an especially fecund source of insights for psychology. Indeed, especially through his major works, *The Structure of Behavior* and *Phenomenology of Perception*, Merleau-Ponty engaged in a detailed dialogue with the major psychological systems of his day: Gestalt psychology, psychoanalysis, and behaviorism. Since Merleau-Ponty's work antedates the coalescence of contemporary cognitive psychology, he did not have an opportunity to discuss their foundational commitments. Nevertheless, his work is especially valuable in resolving some highly problematic conceptual foundations which have become popular as a result of cognitivism's recent rise to paradigmatic prominence. This article will thematize that relevance in the following way. First, the information processing approach to thinking will be briefly reviewed. Second, Merleau-Ponty's basic understanding of thought will be summarized. Third, a dialogue between the two will be developed in order to clarify how Merleau-Ponty provides an alternative to the cognitivist theory of thought. Fourth, this critique will then be supported by phenomenologically based psychological research on thinking in order to bring the discussion to the concretely empirical level.

The Cognitivist Theory of Thinking

The contemporary cognitive psychology of thinking, while not completely monolithic, is dominated by the information processing approach.
formulated by Newell and Simon. And so it is with their work that this dialogue will be developed. First, this selection of Newell and Simon needs to be briefly justified by reviewing their position in the field. Their pioneering efforts have deservedly earned them recognition as the founders of the information processing approach to psychology. Indeed, a recent history states that Newell and Simon's influence "on computing and cognitive psychology so pervades those fields that their discoveries and models are simply taken for granted" (McCorduck, 1979, p. viii). Likewise, in his text on systems in psychology, Robinson (1979, p. 303) even concludes that "'information processing' has become something of a synonym for cognitive psychology itself."

Though some cognitive psychologists, most notably Neisser, dispute this information processing model in areas such as memory and perception, it has achieved pre-eminent status especially with regards to thinking. For example, the 1978 Annual Review of Psychology noted in its survey of the psychology of thinking that "the information processing language is almost universal" (Erickson & Jones, 1978, p. 61). Also, Mandler (1981), a prominent historian of the psychology of thinking, has similarly described the information processing approach as being "synonymous" with the field as a whole.

This new paradigm was initiated by Newell and Simon in the 1950's on the basis of the computer as an exemplar case of an information processing system. Thus, the fundamental justification for the information processing hypothesis has been the implementation of computer simulation models. While these models are now being applied to simulate a very diverse range of psychological phenomena, Newell and Simon's primary interest has always been the simulation of thinking, and they have devoted the major portion of their research efforts in this direction. Their information processing model presents thinking as the construction of a new representation through a series of elementary or primitive processes, combined serially according to explicit and predetermined rules, each process of which is a formally definite operation for the manipulation of information in the form of discrete and contextless bits (Newell & Simon, 1972). Thus, thinking is seen as a processing that is avowedly mechanistic and elementalistic. Both of these characteristics are readily affirmed by information processing theorists. Regarding the former, Newell and Simon have long agreed that "information processing theories of human thinking... provide explanations of behavior that are mechanistic" (Simon & Newell, 1964, p. 283). Similarly, they have repeatedly asserted