FUNCTIONAL MORPHOLOGY OF THE NEMATODE PHARYNX.
II. SPHERICAL BULBS

BY

D. R. ROGGEN
Eenheid Dierkunde, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, België

In a first model the relation between the relative dimensions and the function of a cylindrical pharynx is investigated, taking *Ascaris* as a starting point. Next, the conditions necessary for a valid comparison between a cylindrical pharynx and a spherical bulb are determined. In a second model the functional possibilities of a spherical bulb are determined and it is concluded that a terminal spherical bulb produces more pressure, but less suction, than a comparable cylindrical pharynx.

It is the purpose of this work to develop a simple theoretical model of a pharynx with a terminal spherical bulb and to compare its functional possibilities with those of a cylindrical pharynx. *Ascaris* will be used as a basis for extrapolation.

Extrapolations from Ascaris

When a nematode feeds it sucks in a certain volume of food from its environment and injects it into its gut. This means that the following parameters are sufficient for the description of the function of the pharynx:

- The volume of the food-filled lumen ΔV
- The suction pressure P_S
- The injection pressure, which is equal to the pressure developed in the pharynx wall ΔP.

All nematodes are assumed here to have the same body pressure P_B (see Harris & Crofton, 1957) of value unity.

The transmural pressure at the lumen wall is

$$PT = P_B + \Delta P + P_S$$

Maximum values observed or calculated for *Ascaris* are taken as a basis for comparison (Harris & Crofton, 1957; Roggen, 1973):

$$P_B = 1.35 \times 10^4 \text{ Pa};$$
$$P = 2.15 \times 10^4 \text{ Pa};$$
$$P_S = 0.1 \times 10^4 \text{ Pa};$$
$$PT = 3.60 \times 10^4 \text{ Pa}.$$
relative shortening of the muscles, and this can be determined if the geometry of
the pharynx is known. For simplicity I will consider only a muscle fiber which
extends radially from the midpoint of a sector, i.e. the muscle with the largest
relative shortening. At rest, when the lumen is closed, the resting length of the
muscle LO equals RC, the radius of the cylindrical pharynx.

When the lumen is completely open and has a circular cross-section, the length
of the shortened muscle $LS = R'C - rC$, with $R'C$ = radius of the pharynx when
the lumen is open and $rC =$ radius of the cylindrical lumen. Since the volume of
the pharynx wall is constant,

$$\pi (R'C^2 - rC^2) = \pi RC^2$$

and

$$R'C^2 = RC^2 + rC^2$$

Putting $rC = KC RC$

$$0 \leq KC \leq 1$$

we find

$$LS = RC \sqrt{1 + KC^2} - KC RC$$

and the relative shortening becomes:

$$\left(\frac{\Delta L}{LO}\right)_{c} = \left(\frac{LO - LS}{LO}\right)_{c} = 1 + KC - \sqrt{1 + KC^2}$$

For *Ascaris* $KC = 0.6$ and $\left(\frac{\Delta L}{LO}\right)_{c} = 0.434$.

Assuming a linear relationship between $\frac{\Delta L}{LO}$ and the muscular tension TM
(Ackerman, 1962):

$$TM = a \frac{\Delta L}{LO} + b$$

Knowing that the value for *Ascaris* is 0.434, taking the maximal tension, when
$\Delta L = 0$, as 5×10^5 Nm$^{-2}$ (Roggen, 1973), and taking $PB = 1.35 \times 10^4$ Pa
as unity one arrives at

$$TM = 37 -- 83 \frac{\Delta L}{LO}$$

for the linear relationship between tension and relative shortening in the pharynx
muscles of *Ascaris*.

What happens when all factors except KC are kept constant and KC is varied
between 0.6 (*Ascaris*) and 0?

The relative volume of the lumen varies with KC:

$$\frac{\Delta VC}{VC} = \frac{\pi rC^2 L}{\pi RC^2 L} = KC^2$$

where L = length of the cylinder.