THE SPATIAL DISTRIBUTION OF INDUCTIVE CAPACITIES IN THE NEURAL PLATE AND ARCHENTERON ROOF OF URODELES

by

J. A. LEUSSINK

(Hubrecht Laboratory, Utrecht, The Netherlands)

CONTENTS

1. Introduction .. 2

2. Material and methods ... 5
 2.1. The standard procedure of the main experiments 5
 2.2. Qualitative analysis of the explants 8
 2.3. Quantitative analysis of the explants 10
 2.3.1. The percentage of positive cases (= % PC) (semi-quantitative method) ... 10
 2.3.2. The volume of the induced neural masses (= V) (quantitative method) .. 11
 2.3.3. The percentage of transformed structures (= % T) 13

3. Experimental results ... 13
 3.1. Volume measurement of the inductor material used 13
 3.1.1. General remarks .. 13
 3.1.2. Measurement of the volumes of the various inductors (= Vi) in fixed neurulae .. 14
 3.1.3. Measurement of the volumes of the differentiated inductors in explants ... 15
 3.2. Experiments made with areas of the neural plate as inductor 17
 3.2.1. General remarks .. 17
 3.2.2. Analysis of the explants 17
 3.2.3. The distribution of the activating inductive capacity in the neural plate ... 21
 3.2.4. The distribution of the transforming inductive capacity in the neural plate .. 23
 3.3. Experiments made with areas of the archenteron roof as inductor 25
 3.3.1. General remarks .. 25
 3.3.2. Analysis of the explants 25
 3.3.3. The distribution of the activating inductive capacity in the archenteron roof 29
 3.3.4. The distribution of the transforming inductive capacity in the archenteron roof 31
 3.4. The reciprocal series .. 32
 3.4.1. Introductory remarks 32
 3.4.2. Material and methods 33
 3.4.3. Results .. 34
1. INTRODUCTION

In a classical paper, Spemann (1918) showed that a piece of the dorsal blastoporal lip of a young amphibian gastrula, after transplantation to the belly side of another embryo of the same age, can give rise to a secondary embryonic anlage. Repeating this experiment with heteroplastic transplantation, Spemann & Mangold (1924) could show that the neural tissue of the secondary anlage derives from material of both the donor and the host. Obviously, under the influence of the graft the ventral host ectoderm (presumptive epidermis) can develop into neural tissue, i.e., neural induction takes place. Bautzmann (1926) showed that at the young gastrula stage the material having neural inductive capacity is identical with the material which, after invagination, will form the archenteron roof. Marx (1925) implanted a piece of the archenteron roof of a gastrula into the blastocoel of another gastrula, obtaining a well-defined secondary neural plate at the ventral side of the host. The exogastrulation experiments of Holt-