Two interpretations have dominated discussion of Zeno's paradox of the Moving Rows ("the Stadium"). According to one of these interpretations the paradox concerns relative motion, and according to the other it concerns indivisible magnitudes. In what follows I will argue that there are good reasons for rejecting both interpretations, and I offer an alternative which does not encounter the problems of either of the usual interpretations. According to this interpretation, which is based on the work of Professor D. J. Furley, the paradox of the Moving Rows turns on the unusual properties of the number zero.

The paradox of the Moving Rows concerns three sets of rows, one stationary and the other two moving past the first in opposite directions. For simplicity I will discuss the paradox in terms of three single blocks (A, B and C) of equal size. Block A is stationary, and blocks B and C move past A in opposite directions at the same speed. According to Aristotle the conclusion of the paradox is that "one half the time is equal to the double."\(^1\)

Traditionally the paradox has been interpreted as concerning the relative motion of the three blocks. Since all three blocks are the same length, let \(s\) be the length of any block. Suppose also that \(t\) is the time required for the leading edge of B to pass block A. Since B moves past C at twice the speed B moves past A, the leading edge of B will pass block C in \(t/2\). Thus the time that it takes B to travel distance \(s\) with respect to C is half the time required for B to travel distance \(s\) with respect to A, or, in other words "half the time is equal to the double."\(^2\)

It is bad methodology to interpret a careful and serious philosopher in
such a way that he turns out to have held views which are obviously implausible. The reading of the Moving Rows which has just been given clearly violates this sensible rule. The paradox would only have force if one refused to distinguish between absolute and relative motion, and it is hard to see how someone as astute as Zeno could have made such a mistake.\footnote{3}

Dissatisfaction with this traditional interpretation of the Moving Rows has led modern critics to seek an interpretation which does not involve Zeno in such an obvious fallacy. Vlastos summarizes the modern interpretation as follows:

Blocks A, B, and C would stand for indivisibles and the reasoning would prove that B, traversing an atomic quantum of length qs relatively to A in an atomic quantum of time qt, would traverse qs in $qt/2$ relatively to C, thereby dividing asupposed indivisible.\footnote{4}

Owen and others have argued that this interpretation makes the paradox fit nicely into the general pattern of Zeno's paradoxes, and it also attributes to Zeno a plausible argument against the theory of indivisible temporal and spatial units.\footnote{5}

Although this interpretation resuscitates Zeno, it does so only at the cost of smearing Aristotle. The problem is that this interpretation does not give us a conclusion resembling the one Aristotle attributes to Zeno, that "half the time is equal to the double." If one is trying to preserve the reputation of famous philosophers, not much is gained by an interpretation which makes Aristotle out to have been completely confused about the intended conclusion of a paradox which he discusses at some length. Since the traditional interpretation attributes an unparadoxical paradox to Zeno, and the modern interpretation has Aristotle confused about what he is talking about, it seems reasonable to search for an alternative interpretation of the paradox.

A third interpretation of the paradox is offered by D. J. Furley in his Two Studies in the Greek Atomists.\footnote{6} Furley's goal is to present an interpretation of the paradox which is plausible and which has the same conclusion as that reported by Aristotle. Although Furley thinks that his interpretation of the paradox is more plausible than the relative motion interpretation, he still feels that the Moving Rows "is not, of course, a cogent argument."\footnote{7} I will argue that if we make some alterations in Furley's interpretation, we come out with an interpretation of the moving rows which is a cogent and non-fallacious argument. Since our aim is to find an interpretation of the text which gives a plausible argument to Zeno while preserving the conclusion as reported by Aristotle, an interpretation which gives us a non-fallacious argument for that conclusion is thus a desirable one.