In a recent critical notice, M. R. Stopper discusses at length what he calls 'Nasti’s contention' (namely, the claim that the so-called Chrysippean implication is at least as strong as necessary equivalence between the consequent and its antecedent). He casts some (reasonable) doubts on its real status, asking himself whether the contention is entailed or not by a well-known property of Stoic conditionals (namely that a conditional is sound (hugies) iff the negation of the consequent conflicts with its antecedent) when that property is conjoined with a statement disclosed by a Sextan passage (namely that ‘according to them’ — i.e. to the Dogmatists — as Sextus says, ‘it is impossible for a sound conditional to be constituted from conflicting propositions': *adunaton de esti [...] sunestôs, PH II 189*). According to Stopper, that statement is not a piece of Stoic logic but a consequence of a Sextan fallacy. In what follows I will argue that, although the statement disclosed by Sextus’ passage may well be a piece of Stoic logic, Nasti’s contention may need to be modified in order to get a better agreement with textual evidence.

\[(N) S(P,Q) \rightarrow L(P \leftrightarrow Q)\]

where ‘S(P,Q)’ is short for “if P, then Q” is (Chrysippean) sound’, ‘→’ is the connective of material implication, ‘L’ is the necessity operator, ‘↔’ is the connective of material equivalence (i.e. of material biconditional), ‘P’ and ‘Q’ are (names for) propositions.
The import of the whole discussion seems to be of some relevance; for, if what I will argue is right, all the existing accounts of Stoic logic are inconsistent with genuine, although unnoticed, textual evidence on Chrysippian implication, and even the revised Nasti's contention yields an entirely new elucidation of the Stoic notions of 'conflict' (machē) and 'connectedness' (sunartēsis).

I

The well-known property of Stoic conditionals can be written, using obvious abbreviations, as:

(A1) $S(P,Q) \leftrightarrow C(P,\neg Q)$

The assumption disclosed by PH II 189 can be written as:

(1) $I(S(P,Q) \rightarrow C(P,Q))$

where 'I' stands for 'impossible' (i.e. for 'L→', where L is the necessity operator). An immediate consequence of (1) is:

(A2) $C(P,Q) \rightarrow \neg S(P,Q)$

i.e. if two propositions P, Q conflict, then the conditional 'if P, then Q' is not sound (and $C(P,Q) \rightarrow \neg S(Q,P)$ also holds for $C(P,Q)$ is symmetric).

Sextus' text (PH II 189) provides a wrong justification of (1), namely by saying that the two premisses:

(5) If 'If P, then Q' is sound, then if 'P' holds, so does 'Q';
(6) If 'P' and 'Q' conflict, then if 'Q' holds 'P' does not hold, and if 'Q' holds 'P' does not hold,

when conjoined, entail (A1). To be fair, Sextus says that (1) holds because both (5) and (6) hold: anyway, he is clearly wrong. Thus, Stopper concludes:

We may safely ascribe (5) and (6) to the Stoics. Sextus argues that (5) and (6) entail (A2), and that is his only reason for ascribing (A2) to the Stoics. But Sextus' argument is bad. In any case, he does not ascribe the argument to the Stoics. We should not do so either. Hence [my italics] we have no reason to ascribe (A2) to the Stoics [. . .] (A2) is not a piece of Stoic logic but a consequence of a Sextan fallacy.

Of course Sextus does not say that he ascribes (A2) to the Stoics just because (5) and (6) entail (A2). Moreover, Stopper’s conclusion is a non sequitur. To understand why, let (5) be: '3² + 4² = 5²'; let (6) be the so-called bride’s theorem (i.e. the restriction of Pythagoras’ theorem to the isosceles right triangles); let (A2) be Pythagoras’ theorem. So, mutatis mutandis, Stopper’s conclusion yields something like:

2 Numbered (5) and (6) by Stopper (see [1], p. 283).
3 See [1], p. 284.

314