Aficionados of the *Theaetetus* will enjoy learning about another passage that reveals Plato’s subtle ingenuity. Throughout this work, although what the characters say in the dialogue is obviously part of its meaning, *how* they say it is at least as important, especially in the passages concerning philosophical method. Sometimes the lesson is so subtle that we have to suppose that Plato was deliberately leaving clues for his readers to decipher.

One example involves the number 17, which is where Theodorus stopped when proceeding to show, case by case, that the sides of many squares of area N ft² are incommensurable with a length of one foot. In this context, Socrates was getting Theaetetus to think of what knowledge is, not in terms of various examples of knowledge, but in more general terms.

Theaetetus: It looks easy, Socrates, now you put it that way. In fact, what you’re asking is the same sort of thing that occurred to me and your namesake, Socrates here, when we were having a discussion a little while ago.

Socrates: What was that, Theaetetus?

Theaetetus: Theodorus here drew some diagrams about powers, which showed that the sides of the three-foot square and the five-foot square are incommensurable with one foot, and so on, taking them one by one, for every square up to seventeen square feet— but for some reason he stopped at that point (ἐν δὲ ταὐτῇ πῶς ἐνέσχετο).¹ What occurred to us was something like this: since the number of powers was turning out to be infinite, we should try to gather together all these powers into one group; that way we’d be able to give them a name. (147c-e)

¹ Perhaps a better, though unconventional, way of rendering this much-discussed phrase is ‘but at that point he sort of got stuck.’ This would reflect the conversational, even colloquial, tone of this part of the dialogue. πῶς occurs more frequently in the *Theaetetus* than one would expect, often in this sense, in which the speaker uses it to qualify and soften what he is saying (see also 154b7, 165a1, 177b6, 187d1, and especially 144b2 and 151b2). We must not forget that Theodorus is present and that Theaetetus has the good manners not to say too bluntly that Theodorus’s work was unsatisfactory. (The translation issue does not affect our overall reading.)
Theaetetus explains how he and the young Socrates divided numbers into 'square' and 'oblong' and concluded that while the sides of square numbers are commensurable with the unit, the sides of oblong numbers are not (147e-148b). The point to note is that Theaetetus's discovery is an analysis that yields a classification; this illuminates the issue and supersedes the enumeration of individual examples.2

The same thing happens much later in the dialogue, and Plato leaves a subtle clue to remind us of Theaetetus's methodological advance. It happens when Socrates is trying to find a correct analysis of false belief to distinguish his view from that of Protagoras. On the wax-block model under consideration after 191c, he enumerates the individual cases in which false belief is possible and impossible. The cases differ according to whether one object (call it 'α') is either known or perceived and whether the other object (call it 'β'), with which 'α' is being confused, is either known or perceived. There are 16 possibilities, which are listed below.3 The discussion shows us that the only possibilities for confusion arise when both are known and at least one of them is being perceived (cases 1, 2 and 3 as noted). In these cases, the mind can mismatch the perception of one of them with the memory-trace of the other one, which is what confusion is (193e-194b). This is relatively straightforward, but it is introduced by Plato in

2 This is also the conclusion reached in Myles Burnyeat's 'The Philosophical Sense of Theaetetus's Mathematics', in Isis 69 (1978), pp. 489-513, which stresses that Plato tells us the mathematical story in the way that he does primarily to make the point about philosophical methodology. Plato is quite explicit about this, as he has Socrates say, "You showed the way very well just now, so try to duplicate your answer about the powers; try to find one definition for the various kinds of knowledge, just as you collected the powers, numerous though they were, into a single form" (148b). Burnyeat's article is also good for a survey of the mathematical interpretations of 147c ff.

3 The sixteen cases can be represented in a table:

1. α is known, β is known, α is perceived, β is perceived.
2. α is known, β is known, α is perceived, β is not perceived.
3. α is known, β is known, α is not perceived, β is perceived.
4. α is known, β is known, α is not perceived, β is not perceived.
5. α is known, β is not known, α is perceived, β is perceived.
6. α is known, β is not known, α is perceived, β is not perceived.
7. α is known, β is not known, α is not perceived, β is perceived.
8. α is known, β is not known, α is not perceived, β is not perceived.
9. α is not known, β is known, α is perceived, β is perceived.
10. α is not known, β is known, α is perceived, β is not perceived.
11. α is not known, β is known, α is not perceived, β is perceived.
12. α is not known, β is known, α is not perceived, β is not perceived.
13. α is not known, β is not known, α is perceived, β is perceived.
14. α is not known, β is not known, α is perceived, β is not perceived.
15. α is not known, β is not known, α is not perceived, β is perceived.
16. α is not known, β is not known, α is not perceived, β is not perceived.