The Divided Line and
Plato's 'Theory of Intermediates'

JOHN A. BRENTLINGER

In this essay I shall enter into the vexing question of Plato's "theory of intermediates," and the relation of this theory to the Sun, Line and Cave section of Republic VI and VII. My thesis is that in the last 75 years or so scholarly opinion has reached a complete impasse, having veered from one extreme to another, rather in the fashion of an Hegelian thesis and antithesis; this conflict of opinion desperately requires a synthesizing "third," and in the conclusion of the paper I try to supply this "third."

I Plato did hold a theory of intermediates

In his discussion of Plato's philosophy in Metaphysics A, Aristotle writes:

"Further, besides sensible things and Forms there are the objects of mathematics, which occupy an intermediate position, in that there are many alike, while the Form itself is in each case unique." (987b 14-17)

Aristotle commits himself to these distinctions throughout the Metaphysics, and makes them the basis of his polemic against the systems of Plato, Speusippus, and Xenocrates (e.g., Z. 1028b 17-28, A 1069a 33-36). It is hardly necessary to go into the intricacies of an interpretation of Aristotle's interpretation of Plato in order to accept these distinctions as true; the overwhelming amount of evidence in the Metaphysics and the almost universal agreement of scholars on the matter, makes the existence of a Platonic theory of intermediates, along with ideas and sensibles, highly probable. So far as I know only Cherniss has denied that Plato held a theory of intermediates, and even in this case it is not perfectly clear whether Cherniss denies that Plato held such a doctrine or only whether he is denying that Plato clearly set it forth in lecture form to the members of the Academy. In any case the arguments which

1 For the evidence, see Sir David Ross, Plato's Theory of Ideas, (Oxford, 1953) pp. 151-53. Hereafter I will refer to this work as P.T.I.
2 Riddle of the Early Academy (Univ. of Calif., 1942) pp. 75-78.
Cherniss gives are of roughly three types: (1) he points out that Plato never explicitly sets forth a theory of intermediates, and refers to passages in the dialogues where Plato asserts that the proper subject matter of mathematical study is the ideal numbers; (2) he points out passages in Aristotle where the latter seems to contradict himself in dealing with details in regard to the intermediates; (3) he shows that Plato's principal students, Xenocrates, Speusippus, and Aristotle, disagree among themselves both concerning the subject itself, i.e., the nature of mathematical entities, and in their views of Plato's theory insofar as it is different from theirs. Now the ambiguity in the intention of Cherniss' argument makes it difficult to evaluate; I would certainly agree that points (2) and (3) render highly suspect both the simple-minded view of an "oral tradition," which it is the main purpose of Cherniss' work to criticize, and a literal acceptance of any isolated remark of Aristotle's about the "facts" of Plato's philosophy. But (2) and (3) provide no evidence that Plato never held a theory of intermediates; on the contrary, they indicate that there was such a theory, but that it was either internally problematic or misunderstood by Plato's followers. Argument (1) is evidence against the Aristotelian distinctions, but can be, and has been, obviated by the great majority of scholars; the general view is that Plato developed the theory of intermediates late in life, and moreover was primarily concerned with the ideal numbers, and thus may have failed to mention the mathematical numbers (e.g., in the Seventh Letter or the Epinomis) because he felt them to be relatively unimportant. Later in this paper I will give a somewhat different reply to argument (1).

II The relation of the theory of intermediates to Republic VI and VII

Although the existence of a Platonic theory of intermediates thus seems unquestionable, the relation of the theory to Plato's writings is highly problematic. For as mentioned above Plato never once explicitly says that mathematicians study the objects Aristotle describes, while he does say, by implication, that intermediates are not the proper objects of mathematics; for example, he asserts that the mathematician wants to learn of "the square itself" or "the diameter itself" (Rep. 510D), and then adds no qualification to these remarks. The question as to whether Plato held the theory of intermediates in the Sun, Line, and Cave passages of Republic VI and VII has occupied many scholars, both