Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Quentin Hallez x
  • Search level: Chapters/Articles x
Clear All
Author:

Abstract

This brief report aims to compare the performance of motor reproduction and timeline estimation tasks in two groups of children aged 5–6 and 7–8 years old. The study included 80 children and used a computer-based experiment with two sessions for each method. The findings suggest that motor reproduction and timeline estimation tasks differ in accuracy and variability, with timeline estimation yielding more accurate and less variable estimates. These differences between the two tasks are even more pronounced in younger children. The discussion highlights the importance of using the timeline estimation task for future research on children’s time perception.

In: Timing & Time Perception

Abstract

The aim of this study was to identify the age at which parameters of timing performance in a temporal bisection task converge on an adult-like stable level. Participants in the three- to 20-year-old range were tested using a temporal bisection task with sub-second and supra-second durations. The data were divided into two samples. In the first sample, all participants were integrated into the analysis regardless of their success. In the second sample, only performers were inserted. The point of subjective equality (PSE) and the Weber Ratio (WR) were analyzed for each participant in each sample. By fitting a mathematical model to these parameters as a function of age, we showed a large inter-individual variability in the PSE, such that it does not stabilize with increasing age, i.e., during the significant period of development. Interestingly, time sensitivity (WR) shows a similar pattern through the two samples as adult-like performance appeared at an earlier age for short than for long durations. For the first sample, the modeling of WR data suggests that the children reached an adult-like time sensitivity at the age of six years for the short durations and 8½ years for the long durations. For the second sample, the developmental curve was stable at about the same age for the long duration (seven years), and at earlier age for the short durations, i.e., before three years.

In: Timing & Time Perception

Abstract

This study aimed to examine intra-individual differences in both duration and passage of time (PoT) judgments, and the relationships between them, for a wide range of durations going from a few hundred milliseconds to several minutes. Participants performed a study with a within-subjects design with durations in the milliseconds (200–400 ms), seconds (2–4 s), tens of seconds (20–40 s) and minutes (2–4 min) ranges. For the duration judgments, the results revealed individual differences in temporal accuracy between short durations (<3 s) and long durations (>20 s). In contrast, positive relationships were observed for PoT judgments across the different time scales, except for the millisecond duration. Finally, a significant correlation between duration and PoT judgments appeared in our study only for durations longer than 1 s. Taken together, these results support the temporal taxonomy that distinguishes between the processing of short and long durations, with the latter likely being modulated by memory mechanisms and the awareness of the PoT.

In: Timing & Time Perception