Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: C.-S. Tsai x
  • Search level: All x
Clear All

Asthma is a chronic inflammatory disease related to the immune response of type 2 T helper cells (Th2), which affects all age groups. The incidence of asthma is increasing worldwide, and it has become a significant public health problem. This study aimed to investigate the immunomodulatory effects of Lacticaseibacillus (formerly Lactobacillus) paracasei K47 on mice with ovalbumin (OVA)-induced allergy. The consequences of orally administered heat-inactivated K47 in OVA-sensitised/challenged BALB/c mice were evaluated by assessing the serum levels of immunoglobulins (Igs), airway hyperresponsiveness (AHR), and bronchoalveolar lavage fluid (BALF) cytokine. In addition, the effect of K47 on type 1 T helper cells (Th1)/Th2 cytokine production in splenocytes from OVA-sensitised mice was evaluated. The results revealed that supplementation with K47 remarkably reduced serum levels of total IgE, OVA-specific IgE, and OVA-specific IgG1 in OVA-sensitised/challenged mice. In addition, K47 intervention ameliorated AHR and suppressed the accumulation of inflammatory cells in the BALF of OVA-sensitised/challenged mice. Furthermore, the immunomodulatory ability of K47 was mediated by regulation of the cytokine profile toward the Th1 response in the BALF, and splenocytes of OVA-sensitised mice. Taken together, these results suggested that K47 can modulate the host immune response to ameliorate AHR and inflammation in allergic asthma.

In: Beneficial Microbes

The efficacy of Lactobacillus paracasei V0151 (V0151), isolated from the faeces of a child, to modulate immune responses was investigated. In RAW 264.7 cells expressing an inducible nitric oxide synthase (iNOS)-directed luciferase gene, heat-inactivated V0151 stimulated iNOS expression followed by nitric oxide production. V0151 significantly elevated interferon gamma, interleukin (IL)-10, tumour necrosis factor alpha, and IL-1β production in human peripheral blood mononuclear cells. In splenocytes isolated from ovalbumin (OVA)-sensitised BALB/c mice treated with OVA and V0151 at different bacterium-to-cell ratios (1:1, 10:1, and 20:1) for 96 h, IL-2, IL-4, IL-5, and IL-13 production was dose-dependently downregulated, whereas IL-12 was dose-dependently upregulated. Collectively, our findings indicate that V0151 might regulate pro-inflammatory factors in macrophages and splenocytes. Furthermore, the T helper 1/T helper 2 (Th1/Th2) balance was also skewed toward Th1 dominance through the elevation of Th1 cytokine production.

In: Beneficial Microbes

Maternal separation (MS) has been developed as a model for inducing stress and depression in studies using rodents. The concept of the gut-brain axis suggests that gut health is essential for brain health. Here, we present the effects of administration of a probiotic, Lactobacillus paracasei PS23 (PS23), to MS mice against psychological traits including anxiety and depression. The administration of live and heat-killed PS23 cells showed positive behavioural effects on MS animals, where exploratory tendencies and mobility were increased in behavioural tests, indicating reduced anxiety and depression compared to the negative control mice (P<0.05). Mice administered with both live and heat-killed PS23 cells also showed lower serum corticosterone levels accompanied by higher serum anti-inflammatory interleukin 10 (IL-10) levels, compared to MS separated mice (P<0.05), indicating a stress-elicited response affiliated with increased immunomodulatory properties. Assessment of neurotransmitters in the brain hippocampal region revealed that PS23 affected the concentrations of dopaminergic metabolites differently than the control, suggesting that PS23 may have improved MS-induced stress levels via neurotransmitter pathways, such as dopamine or other mechanisms not addressed in the current study. Our study illustrates the potential of a probiotic in reversing abnormalities induced by early life stress and could be an alternative for brain health along the gut-brain axis.

In: Beneficial Microbes

Abstract

Irritable bowel syndrome (IBS), a disorder of gut-brain interaction, is associated with abdominal pain and stool frequency/character alterations that are linked to changes in microbiome composition. We tested whether taxa differentially abundant between females with IBS vs healthy control females (HC) are associated with daily gastrointestinal and psychological symptom severity. Participants (age 18-50 year) completed a 3-day food record and collected a stool sample during the follicular phase. They also completed a 28-day diary rating symptom intensity; analysis focused on the three days after the stool sample collection. 16S rRNA gene sequencing was used for bacterial identification. Taxon abundance was compared between IBS and HC using zero-inflated quantile analysis (ZINQ). We found that females with IBS (n = 67) had greater Bacteroides abundance (q = 0.003) and lower odds of Bifidobacterium presence (q = 0.036) compared to HC (n = 46) after adjusting for age, race, body mass index, fibre intake, and hormonal contraception use. Intestimonas, Oscillibacter, and Phascolarctobacterium were more often present and Christensenellaceae R-7 group, Collinsella, Coprococcus 2, Moryella, Prevotella 9, Ruminococcaceae UCG-002, Ruminococcaceae UCG-005, and Ruminococcaceae UCG-014 were less commonly present in IBS compared to HC. Despite multiple taxon differences in IBS vs HC, we found no significant associations between taxon presence or abundance and average daily symptom severity within the IBS group. This may indicate the need to account for interactions between microbiome, dietary intake, metabolites, and host factors.

In: Beneficial Microbes