Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Chi-Leung So x

P. David Jenes, Laurence R. Schimleck, Chi-Leung So, Alexander Clark III and Richard F. Daniels

Near infrared (NIR) spectroscopy provides a rapid method for the determination ofwood properties of radial strips. The spatial resolution of the NIR measurements has generally been limited to sections 10mm wide and as a consequence the estimation of wood properties of individual rings or within rings has not been possible. Many different NIR instruments can be used to collect NIR spectra from the surface of radial strips at relatively high spatial resolution and the purpose of this study was to compare wood property calibrations obtained using NIR spectra collected in 5 mm and 2 mm seetions with several different NIR instruments. We found that calibrations based on spectra collected in 5 mm seetions had good statistics, with those based on the Bruker Vector 22/N spectrometer the strongest. Of the three properties examined (density, microfibril angle and stiffness), density had the weakest statistics. When the spatial resolution was decreased to 2 mm, calibration and prediction statistics were weaker than those at 5 mm. RPDp's were relatively low with the highest being 1.76 for predicted stiffness based on NIR spectra obtained using the ASD Field Spec Pro spectrometer. Based on the low RPDp's, we conclude that none of the instruments examined were suitable for scanning radial strips at a spatial resolution of 2 mm.

Brian K. Via, Michael Stine, Todd F. Shupe, Chi-Leung So and Leslie Groom

Improvement of specific gravity through tree breeding was an early choice made in the mid 20th century due to its ease of measurement and impact on pulp yield and lumber strength and stiffness. This was often the first, and in many cases, the only wood quality trait selected for. However, from a product standpoint, increased specific gravity has shown to lower many paper strength and stiffness properties and has been assumed to be directly attributable to increased fiber coarseness. As a result, it is currently not clear which fiber trait would best benefit a tree improvement program for paper products. This review found coarseness to be perhaps more important to paper strength and stiffness whereas tracheid length showed better promise from a breeding point of view due to its independence from specific gravity. However, both traits possessed strong heritability and influence on product performance and thus both would be beneficial to breed for depending on organizational goals and end product mix. The objective of this paper is to review and prioritize coarseness and tracheid length from both an end use and raw material perspective. To aid in prioritization, the variation, correlation, and heritability of both traits were reviewed along with significant genetic and phenotypic correlations. Variation trends within and between families as well as within a tree were reviewed.