Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Dimitra Mantzouka x
  • Search level: All x
Clear All


We describe the first evidence of fossil Abies wood from the late early Miocene fossil plant assemblage of Wiesa in east Germany. The comparatively well-preserved piece of xylitic wood was recovered in the kaolin quarry at Hasenberg hill in Wiesa. The Wiesa assemblage is characterized as being allochthonous and partly parautochthonous mass deposits of diaspores, leaves, and wood. The latter component is rather incompletely studied so far. The described fossil is characterized by high rays, mostly uniseriate bordered pits, generally thick and pitted horizontal and tangential ray cell walls, but also partly smooth horizontal ray cell walls, absence of ray tracheids, the occurrence of traumatic resin canals, and rare occurrence of axial parenchyma of two types. This type of fossil wood has been described as Abietoxylon shakhtnaense Blokhina from the Oligo-Miocene of Sakhalin, Russia. Due to nomenclatural issues of Abietoxylon a recombination to Cedroxylon Kraus emend. Gothan is proposed following common practice for affiliation of abietoid fossil wood of Cenozoic age. Cedroxylon shakhtnaense comb. nov. shares anatomical characteristics with the wood of extant Abies Mill., in particular with sections Abies and Grandis, and is most closely related to section Grandis. The properly preserved fossil wood from Wiesa provides the opportunity of applying qualitative and quantitative analyses for testing and discussing its placement in relationship to intra-tree variability and ontogenetic aspects. The first evidence of fossil wood of Abies from Wiesa confirms again the presence of the genus in mid-latitude subtropical zonal vegetation during the beginning of the Miocene Climatic Optimum.

In: IAWA Journal

Several specimens of Lauraceae fossil wood from the Cenozoic of Greece (southern part of Lesbos), the Czech Republic (Kadaň-Zadní Vrch Hill and Jáchymov), and Hungary (Ipolytarnóc) were studied. When considering whether they belonged to the speciose fossil wood genus Laurinoxylon, we reviewed the literature and data from InsideWood on fossil and modern woods. As a result, we propose criteria for excluding a fossil Lauraceae wood from Laurinoxylon and list the species that should be excluded from this genus. The criteria (filters) proposed to exclude a genus from having relationships with Laurinoxylon are: A. Axial parenchyma features: A1. Marginal axial parenchyma, A2. Aliform to aliform-confluent paratracheal parenchyma. B. Ray features: B1. Rays higher than 1 mm, B2. Exclusively homocellular rays, B3. Rays more than 5 cells wide, B4. Rays storied. C. Porosity features: Ring-porous. D. Idioblasts: Absence of idioblasts. Based on the distribution of idioblasts, we recognize four groups in Laurinoxylon (Type 1 - with idioblasts associated only with ray parenchyma cells, Type 2a - with idioblasts associated with both ray and axial parenchyma, Type 2b - with idioblasts associated both with rays and present among the fibres, and Type 3 - with idioblasts associated with ray and axial parenchyma and also among the fibres) and list the extant genera with features of those groups. Such grouping helps with interpreting the relationships of fossil lauraceous woods with extant genera. We discuss the Oligocene–Miocene European species that belong to these Laurinoxylon groups, noting that some warrant reassignment to different genera or even families. Future studies are needed to determine whether new genera should be established to accommodate these species. We propose the new combination Cinnamomoxylon variabile (Privé-Gill & Pelletier) Mantzouka, Karakitsios, Sakala & Wheeler.

Free access
In: IAWA Journal