Search Results
Emotions modulate cognitive processes, including those involved in the perception of time. A number of studies have demonstrated that the emotional modulation of interval timing can be described in terms of an attentional or an arousal-based mechanism, depending on the exact task setup. In this paper, two temporal generalization experiments with auditory emotional stimuli as distractors are presented. These experiments are modeled after the work by Lui et al. (PLoS One, , 6, e218292011) who, using visual distractors, provided evidence for an attentional account of emotion-regulated modulation of the perception of time. Experiment 1 replicates the findings of Lui et al., and thus generalizes their work to auditory stimuli. However, Experiment 2, in setup highly similar to Experiment 1, failed to find any effects of emotional modulation on interval timing. These results indicate that emotional effects on interval timing, although often reported, might not be as ubiquitous as earlier research has (implicitly) suggested.
Forming temporal expectations plays an instrumental role for the optimization of behavior and allocation of attentional resources. Although the effects of temporal expectations on visual attention are well-established, the question of whether temporal predictions modulate the behavioral outputs of the autonomic nervous system such as the pupillary response remains unanswered. Therefore, this study aimed to obtain an online measure of pupil size while human participants were asked to differentiate between visual targets presented after varying time intervals since trial onset. Specifically, we manipulated temporal predictability in the presentation of target stimuli consisting of letters which appeared after either a short or long delay duration (1.5 vs. 3 s) in the majority of trials (75%) within different test blocks. In the remaining trials (25%), no target stimulus was present to investigate the trajectory of preparatory pupillary response under a low level of temporal uncertainty. The results revealed that the rate of preparatory pupillary response was contingent upon the time of target appearance such that pupils dilated at a higher rate when the targets were expected to appear after a shorter as compared to a longer delay period irrespective of target presence. The finding that pupil size can track temporal regularities and exhibit differential preparatory response between different delay conditions points to the existence of a distributed neural network subserving temporal information processing which is crucial for cognitive functioning and goal-directed behavior.
Timing & Time Perception aims to be the forum for all psychophysical, neuroimaging, pharmacological, computational, and theoretical advances on the topic of timing and time perception in humans and other animals. We envision a multidisciplinary approach to the topics covered, including the synergy of: Neuroscience and Philosophy for understanding the concept of time, Cognitive Science and Artificial Intelligence for adapting basic research to artificial agents, Psychiatry, Neurology, Behavioral and Computational Sciences for neuro-rehabilitation and modeling of the disordered brain, to name just a few.
Given the ubiquity of interval timing, this journal will host all basic studies, including interdisciplinary and multidisciplinary works on timing and time perception and serve as a forum for discussion and extension of current knowledge on the topic.
-
Print + Online €457.00$530.00
-
Print Only €419.00$487.00
-
Online only €381.00$442.00
-
Please contact sales in order to purchase any of the above.
-
Print Only €112.00$138.00
-
Online only €112.00$138.00
-
Please contact sales in order to purchase any of the above.