Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: P. Zomer x
  • Search level: All x
Clear All
In: Legitimising Magic

Abstract

Edible insects such as lesser mealworm (Alphitobius diaperinus) are a promising new protein source for food and feed. The feed substrate on which these insects are reared may be contaminated with residues of insecticides originating from agricultural products that may impact insect performance. In this study, two generations of A. diaperinus were chronically exposed to spinosad (2.0 and 0.2 mg/kg) and imidacloprid (0.1 and 0.01 mg/kg) in the substrate. The aim was to determine sublethal effects on performance measures (total biomass (yield), mean individual weight, number of alive individuals) of larvae, pupae, and adult beetles, as well as pupation and eclosion. Exposure to spinosad at 2.0 mg/kg resulted in significant adverse effects on most performance measures of larvae, of both generations. Imidacloprid caused a reduction in yield and mean individual weight of the larvae as compared to the control at 0.1 mg/kg, while an increase in those measures was observed at 0.01 mg/kg. Significant adverse effects on adult beetles were only observed for imidacloprid at 0.1 mg/kg, and no significant effects of this insecticide on pupation and eclosion were observed. The concentrations of tested substances in larval samples were negligible for both generations, however, transfer from substrate to larval biomass was higher in the offspring generation relative to the parent generation. More research is needed to fully assess the hazard of insecticide residues to cause sublethal effects on A. diaperinus, for which method development for more cost-efficient designs is required.

Open Access
In: Journal of Insects as Food and Feed

This study deals with one of the major concerns in mycotoxin determinations: the matrix effect related to LC-MS/ MS systems with electrospray ionization sources. To this end, in a first approach, the matrix effect has been evaluated in two ways: monitoring the signal of a compound (added to the mobile phase) during the entire chromatographic run, and by classical post-extraction addition. The study was focused on nine selected mycotoxins: aflatoxin B1, fumonisins B1, B2 and B3, ochratoxin A, deoxynivalenol, T-2 and HT-2 toxins and zearalenone in various sample extracts giving moderate to strong matrix effects (maize, compound feed, straw, spices). Although the permanent monitoring of a compound provided a qualitative way of evaluating the matrix effects at each retention time, we concluded that it was not adequate as a quantitative approach to correct for the matrix effect. Matrix effects measured by post-extraction addition showed that the strongest ion suppression occurred for the spices (up to -89%). Five different calibration approaches to compensate for matrix effects were compared: multi-level external calibration using isotopically labelled internal standards, multi-level and single level standard addition, and two ways of single-point internal calibration: one point isotopic internal calibration and isotope pattern deconvolution. In general, recoveries and precision meeting the European Union requirements could be achieved with all approaches, with the exception of the single level standard addition at levels too close to the concentration in the sample. When an isotopically labelled internal standard is not available, single-level standard addition is the most efficient option.

In: World Mycotoxin Journal

Abstract

Reared insects such as black soldier fly larvae (Hermetia illucens) are considered a potential alternative feed protein. However, dietary exposure to insecticide residues via the substrate could adversely affect performance indicators (yield/survival) and substance-transfer from substrate to larval biomass could result in non-compliance with low legal limits. Effects of pyrethroid insecticides cypermethrin and deltamethrin were tested at varying concentrations, with or without the synergist piperonyl butoxide (PBO). Concentration/response curves for yield were estimated and samples were analysed to determine concentrations of parent compounds and selected metabolites. Results suggest that deltamethrin is highly toxic to H. illucens larvae: the critical effect dose for 10% yield loss was estimated to be 0.04 mg/kg, compared to a legal limit in wheat of 2.0 mg/kg. Cypermethrin was comparatively less toxic, in line with prior studies, but may also cause significant adverse effects even for exposure levels below the legal limit – especially when combined with PBO. For both substances, transfer from substrate to larvae is a potential issue due to low limits, and transfer as well as toxicity are increased by presence of PBO. Some metabolites could be detected, but more research is needed to determine resistance mechanisms involved.

Open Access
In: Journal of Insects as Food and Feed