Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: R.J. Shulman x
  • Search level: All x
Clear All

Previously we showed that urine trefoil factor 3 (TFF3) levels were higher in females with irritable bowel syndrome (IBS) compared to non-IBS females. To assess if TFF3 is associated with symptoms and/or reflect alterations in gastrointestinal permeability and gut microbiota in an IBS population, we correlated stool and urine TFF3 levels with IBS symptoms, intestinal permeability, stool microbial diversity and relative abundance of predominant bacterial families and genera. We also tested the relationship of stool TFF3 to urine TFF3, and compared results based on hormone contraception use. Samples were obtained from 93 females meeting Rome III IBS criteria and completing 4-week symptom diaries. TFF3 levels were measured by ELISA. Permeability was assessed with the urine lactulose/mannitol (L/M) ratio. Stool microbiota was assessed using 16S rRNA. Stool TFF3, but not urine TFF3, was associated positively with diarrhoea and loose stool consistency. Higher stool TFF3 was also associated with lower L/M ratio and microbial diversity. Of the 20 most abundant bacterial families Mogibacteriaceae and Christensenellaceae were inversely related to stool TFF3, with only Christensenellaceae remaining significant after multiple comparison adjustment. There were no significant relationships between stool or urine TFF3 levels and other symptoms, nor between stool and urine levels. In premenopausal females, urine TFF3 levels were higher in those reporting hormone contraception. Collectively these results suggest that higher stool TFF3 levels are associated with IBS symptoms (loose/diarrhoeal stools), lower gut permeability, and altered stool bacteria composition (decreased diversity and decreased Christensenellaceae), which further suggests that TFF3 may be an important marker of host-bacteria interaction.

In: Beneficial Microbes

Abstract

Irritable bowel syndrome (IBS), a disorder of gut-brain interaction, is associated with abdominal pain and stool frequency/character alterations that are linked to changes in microbiome composition. We tested whether taxa differentially abundant between females with IBS vs healthy control females (HC) are associated with daily gastrointestinal and psychological symptom severity. Participants (age 18-50 year) completed a 3-day food record and collected a stool sample during the follicular phase. They also completed a 28-day diary rating symptom intensity; analysis focused on the three days after the stool sample collection. 16S rRNA gene sequencing was used for bacterial identification. Taxon abundance was compared between IBS and HC using zero-inflated quantile analysis (ZINQ). We found that females with IBS (n = 67) had greater Bacteroides abundance (q = 0.003) and lower odds of Bifidobacterium presence (q = 0.036) compared to HC (n = 46) after adjusting for age, race, body mass index, fibre intake, and hormonal contraception use. Intestimonas, Oscillibacter, and Phascolarctobacterium were more often present and Christensenellaceae R-7 group, Collinsella, Coprococcus 2, Moryella, Prevotella 9, Ruminococcaceae UCG-002, Ruminococcaceae UCG-005, and Ruminococcaceae UCG-014 were less commonly present in IBS compared to HC. Despite multiple taxon differences in IBS vs HC, we found no significant associations between taxon presence or abundance and average daily symptom severity within the IBS group. This may indicate the need to account for interactions between microbiome, dietary intake, metabolites, and host factors.

In: Beneficial Microbes