Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: S.M. Cutting x
  • Search level: All x
Clear All

Abstract

Spores of Bacillus subtilis including one strain used commercially were evaluated for their potential value as a probiotic and as potential food additives. Two isolates of B. subtilis examined here were HU58, a human isolate and PXN21, a strain used in an existing commercial product. Compared to a domesticated laboratory strain of B. subtilis both isolates carried traits that could prove advantageous in the human gastro-intestinal tract. This included full resistance to gastric fluids, rapid sporulation and the formation of robust biofilms. We also showed that PXN21 spores when administered weekly to mice conferred non-specific cellular immune responses, indicative signs of the stimulation of innate immunity. Spores mixed in wholemeal biscuits were found to survive baking at 235 °C for 8 minutes with only a 1-log reduction in viability. That spores can survive the baking process offers the possibility of using spores as probiotic supplements in a range of novel food products.

In: Beneficial Microbes

Bacillus species are becoming increasingly relevant for use as probiotics or feed additives where their heat stability can ensure survival in the food matrix or enable long-term storage at ambient temperature. Some Bacillus species are pigmented and in this study, we have examined two strains, one Bacillus pumilus (pigmented red) and the other Bacillus megaterium (pigmented yellow) for their safety for potential use in humans as dietary supplements. In addition, we have set out to determine if they might confer any potential health benefits. Both strains produce C30 carotenoids while the B. pumilus strain also produced large quantities of riboflavin equivalent to genetically modified Bacillus strains and most probably contributing to this strain’s pigmentation. Riboflavin’s and carotenoids are antioxidants, and we have evaluated the ability of vegetative cells and/or spores to influence populations of Faecalibacterium prausnitzii in the colon of mice. While both strains increased levels of F. prausnitzii, spores of the B. pumilus strain produced a significant increase in F. prausnitzii levels. If found to be reproducible in humans such an effect might, potentially, confer health benefits particularly for those suffering from inflammatory bowel disease.

Open Access
In: Beneficial Microbes

A well-established rat model of diet-induced metabolic syndrome was used to evaluate the effects of the oral administration of spores or cells of HU16, a carotenoid-producing strain of Bacillus indicus. Symptoms of metabolic syndrome were induced in 90-days old, male Sprague-Dawley rats maintained for eight weeks on a high-fat diet, as previously reported. Parallel groups of animals under the same diet regimen also received a daily dose of 1×1010 cells or spores of B. indicus HU16. Cells of strain HU16 were able to reduce symptoms of metabolic syndrome, plasma markers of inflammation and oxidative markers in plasma and liver to levels similar to those observed in rats under a standard diet. HU16 cells did not affect obesity markers or the accumulation of triglycerides in the liver of treated animals. Denaturing gradient gel electrophoresis analysis showed that the oral administration of HU16 cells did not significantly affect the gut microbiota of high fat-fed rats, suggesting that the observed beneficial effects are not due to a reshaping of the gut microbiota but rather to metabolites produced by HU16 cells.

In: Beneficial Microbes

Abstract

Chronic intestinal inflammation is associated with strong alterations of the microbial composition of the gut. Probiotic treatments and microbiota-targeting approaches have been considered to reduce the inflammation, improve both gut barrier function as well as overall gastrointestinal health. Here, a murine model of experimental colitis was used to assess the beneficial health effects of Bacillus subtilis SF106 and Bacillus clausii (recently renamed Shouchella clausii) SF174, two spore-forming strains previously characterised in vitro as potential probiotics. Experimental colitis was induced in BALB/c mice by the oral administration of dextran sodium sulphate (DSS) and groups of animals treated with spores of either strain. Spores of both strains reduced the DSS-induced inflammation with spores of B. clausii SF174 more effective than B. subtilis SF106. Spores of both strains remodelled the mouse gut microbiota favouring the presence of beneficial microbes such as members of the Bacteroidetes and Akkermansia genera.

In: Beneficial Microbes