Search Results

The requirements of Ranunculus asiaticus L. for N and K fertigation were recently studied in an experimental cultivation system in soilless culture, and the results identified lower requirement of R. asiaticus L. for N and K fertilization than the regime routinely practiced in Israel in the production fields. Fertigation with 50 mg N L-1 and 60 mg K L-1 excelled in terms of marketable flower production, flower quality, vase life duration, and reducing damage to the cut-flower yield by "stem-topple". In the present study, to assess the applicability of the newly developed optimized fertigation regime for soil-cultivation in the commercial production fields, we have compared the conventional high-input fertigation practice (100 mg N L-1 and 120 mg K L-1) with the newly developed reduced-fertigation regime (50 mg N L-1 and 60 mg K L-1) under agronomic conditions routinely practiced for commercial cultivation in the Bessor region, at the south of Israel. The newly optimized regime, which requires half the inputs of K and N fertilizers, was sufficient for optimal yield quality and quantity in agronomic soil production setups. It supported production of the same number of marketable cut flowers, of better length quality and vase life than the high input commercial regime. Utilization of the newly optimized regime therefore has the potential to increase income to farmers by reducing fertilizers input costs, and increasing profit from the improved flower quality.

In: Israel Journal of Plant Sciences

The irrigation and fertilization regime of different varieties of Grevillea in Israel are based on existing knowledge for growing various varieties of the Proteaceae family for production of cut flowering branches. However, growers face problems in cultivating Grevillea “Spiderman,” such as leaf chlorosis, prolonged growth until flowering, and reduced quality of cut flowering branches. The present study aimed to examine whether these problems stem from deficiency or excess of Fe, Mn, Zn, P, and Mg, focusing on the effect of these nutrients on growth, flowering, and appearance of visual leaf symptoms and on yield, quality, and vase life longevity of cut flowering branches. The nutrient treatments significantly affected plant development and flowering. Increasing the Fe concentration from 1 to 2 or 3 mg l–1 resulted in improved leaf color, from slightly yellow to dark green. The combination of 2 mg l–1 Fe + 1.8 mg l–1 Mn resulted in early flowering, highest yield, and development of long lateral branches. Low levels of P caused in the first year of treatment leaf chlorosis, which was intensified during the third year, resulting in severe yellowing of the flowering branches. Leaf necrosis and tip burn appeared in treatments with high concentrations of Zn, Mn, and Mg. Deficiency of Fe and Mn and high concentration of P and Mg led to the development of a large number of branches without flowers. The optimal fertilization treatment that yielded the highest quality of flowering branches after harvest was 2 mg l–1 Fe. Branches of this treatment had green foliage at harvest and the longest vase life (10 days) following the recommended postharvest treatment and air transport simulation. Based on the findings of the present research, it can be concluded that the problems in the cultivation of G. “Spiderman,” such as leaf chlorosis, delayed flowering, and reduced quality of flowering branches, result from improper fertilization.

In: Israel Journal of Plant Sciences

Eucalyptus silver dollar (Eucalyptus cinerea) is cultivated under intensive agronomic practices for production of cut foliage branches for the floriculture industry. A range of damage symptoms, suspected to be related to unoptimized mineral nutrition, routinely occur in the leaves at the production plantations and reduce yield quality. No information is available about the nutritional requirements of Eucalyptus silver dollar, or of any other Eucalyptus species under intense cultivation for cut foliage branches production. In this study we evaluated the hypotheses that: (1) leaf damage symptoms in the Eucalyptus silver dollar plantations might be related to the nutritional status of the leaves; and (2) they are affected by environmental and growing conditions, and will therefore differ between seasons and location of the plantations. To test these hypotheses we studied the seasonal and location variations in the ionomics of damaged and healthy leaves, physiological parameters, and postharvest attributes of cut foliage branches during vase life in four plantations of Eucalyptus silver dollar in Israel. The observed leaf symptoms were also characterized anatomically. The range of concentrations for individual macronutrients in the leaves was (in g kg–1): N (18–40); P (1.2–3.0); K (5.5–17.0); Ca (3.5–14.0); Mg (1.1–2.8); S (1.3–2.6). The concentrations range for micronutrients was (in mg kg–1): B (10–100); Fe (30–170); Zn (14–27); Mn (38–190); Cu (3.5–5.9). None of the identified leaf symptoms correlated with a consistent increase or decrease of the content of a specific mineral nutrient or heavy metal compared to the healthy leaves, suggesting that they were not caused by mineral deficiency or toxicity. The leaf ionomics was affected by season and varied between locations. The main damage symptoms observed in the four examined plantations during the four harvests were red and purple spots, and oil stains. Postharvest experiments showed that the quality of branches was reduced during 7–15 days of vase life following transport simulation to the local market. The degree of reduced quality during vase life was also dependent on the location of the plantation and the season of harvest. The oil stains appeared in the two most southern locations during summer, suggesting that this symptom might be derived from the summer conditions such as the high temperatures and high light intensities occurring in the southern part of Israel.

In: Israel Journal of Plant Sciences