Anatomical characteristics and lignin distribution of ‘compression-wood-like reaction wood’ in Gardenia jasminoides Ellis were investigated. Two coppiced stems of a tree were artificially inclined to form reaction wood (RW). One stem of the same tree was fixed straight as a control, and referred to as normal wood (NW). Excessive positive values of surface-released strain were measured on the underside of RW stems. Anatomical characteristics of xylem formed on the underside of RW and in NW stems were also observed. The xylem formed on the underside exhibited a lack of S3 layer in the secondary fibre walls, an increase of pit aperture angle in the S2 layer, and an increase in lignin content. Some of the anatomical characteristics observed in the underside xylem resembled compression wood in gymnosperms. These results suggest that the increase of microfibril angle in the secondary wall and an increase in lignin content in angiosperms might be common phenomena resembling compression wood of gymnosperms.

In: IAWA Journal

To assess the characteristics of tension wood (TW) in Trochodendron aralioides Sieb. et Zucc., seedling stems were artificially inclined at angles of 30° (TW- 30), 50° (TW-50), and 70° (TW-70) from the vertical. At all angles, the growth promotion was pronounced on the upper side of the inclined stems, where excessive tensile growth stress was observed. A gelatinous layer (G-layer) formed in the tracheids of TW. The cell wall structure of the tracheids in TW was S1 + G. The G-layer had a small pit aperture angle <10°. TW-50 showed larger tensile growth stress, a thicker G-layer area, and a smaller pit aperture angle of the Glayer than TW-30 and TW-70. Lower levels of Klason lignin and hemicellulose and higher levels of α-cellulose content were observed in TW-50. In addition, an increase in glucose content and a decrease in xylose content in holocellulose were observed in TW-50. Therefore, it can be concluded that the degree of TW varied with different inclination angles.

In: IAWA Journal

The anatomical and chemical characteristics of reaction wood (RW) were investigated in Liriodendron tulipifera Linn. Stems of seedlings were artificially inclined at angles of 30 (RW-30), 50 (RW-50) and 70° (RW-70) from the vertical, and compared with normal wood (NW) from a vertical seedling stem. The smallest values for the wood fibre length and vessel number were observed in RW-50. The pit aperture angle was less than 10° in RW-30 and RW-50, in which reduced lignin content was observed in the S2 layer of the wood fibres. An increase in the glucose content and a decrease in the lignin and xylose content was observed in RW-50. The stem inclination angle affected the degree of RW development with regard to anatomical and chemical characteristics: the severest RW was observed in RW-50, followed by RW-30. RW-70 was similar in anatomical and chemical characteristics to NW, apparently because the inclination was too strong to enable recovery of its original position. In this case a vertical sprouting stem was formed to replace the inclined stem.

In: IAWA Journal