Effect of copper exposure on histamine concentrations in the marbled crayfish (Procambarus fallax forma virginalis)

In: Animal Biology
View More View Less
  • 1 Department of Ecological Science, VU University, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
  • 2 Faculty of Agricultural Technology, UNIKA Soegijapranata, Jl. Pawiyatan Luhur IV/1, Semarang 50234, Indonesia
  • 3 Alterra, Wageningen University and Research Centre, P.O. Box 47, 6700 AA Wageningen, The Netherlands

Login via Institution

Crustaceans can store excess copper in the hepatopancreas, an organ playing a role in digestive activity as well as in neurosecretory control. Here, we studied the effect of copper exposure on the level of histamine, an indicator of food spoilage in edible crustaceans. Histamine is also a neuromodulator in the intestinal nervous system of crustaceans, and a human allergen. Marbled crayfish (Procambarus fallax forma virginalis) were exposed to average measured values of 0.031 mg Cu/l and 0.38 mg Cu/l, respectively, for 14 days and then transferred to copper-free water for another 14 days. Concentrations of copper and histamine in the hepatopancreas and muscle were evaluated at different time points. Histamine levels were significantly higher in hepatopancreas and muscle tissues at the highest exposure level, but only after transfer of the animals to copper-free water. The increased histamine concentration following copper exposure may be explained by a (delayed) stress response, and by up-regulated histidine synthesis induced by copper, followed by decarboxylation to histamine.

  • Anderson M.B., Reddy P., Preslan J.E., Fingerman M., Bollinger J., Jolibois L., Maheshwarudu G., George W.J. (1997) Metal accumulation in crayfish, Procambarus clarkii, exposed to a petroleum-contaminated Bayou in Louisiana. Ecotoxicol. Environ. Saf., 37, 267-272.

    • Search Google Scholar
    • Export Citation
  • Baden S.P., Eriksson S.P., Gerhardt L. (1999) Accumulation and elimination kinetics of manganese from different tissues of the Norway lobster, Nephrops norvegicus (L.). Aquat. Toxicol., 46, 127-137.

    • Search Google Scholar
    • Export Citation
  • Bini G., Chelazzi G. (2006). Acclimatable cardiac and ventilatory responses to copper in the fresh water crayfish Procambarus clarkii. Comp. Biochem. Physiol., 144C, 235-241.

    • Search Google Scholar
    • Export Citation
  • Calabrese A., MacInnes J.R., Nelson D.A., Greig R.A., Yevich P.P. (1984) Effect of long-term exposure to silver or copper on growth, bioaccumulation and histopathology in blue mussel Mytilus edulis. Mar. Environ. Res., 11, 253-274.

    • Search Google Scholar
    • Export Citation
  • Canivet V., Chambon P., Gibert J. (2001) Toxicity and bioaccumulation of arsenic and chromium in epigean and hypogean freshwater macroinvertebrates. Arch. Environ. Contam. Toxicol., 40, 345-354.

    • Search Google Scholar
    • Export Citation
  • Cebada J., Garcia U. (2007) Histamine operated Cl-gated channels in crayfish neurosecretory cells. J. Exp. Biol., 210, 3962-3969.

  • Engel D.W., Brouwer M. (1993) Crustaceans as models for metal metabolism: effects of the molt cycle on blue crab metal metabolism and metallothionein. Mar. Environ. Res., 35, 1-5.

    • Search Google Scholar
    • Export Citation
  • Harris R.R., Santos M.C.F. (2000). Heavy metal contamination and physiology variability in the Brazilian mangrove crabs Ucides cordatus and Callinectes danae (Crustacea: Decapoda). Mar. Biol., 137, 691-703.

    • Search Google Scholar
    • Export Citation
  • Khan A.T., Weis J.S., D’Andrea L. (1989) Bioaccumulation of four heavy metals in two populations of grass shrimp, Palaemonetes pugio. Bull. Environ. Contam. Toxicol., 42, 339-343.

    • Search Google Scholar
    • Export Citation
  • Li N., Zhao Y., Yang J. (2007) Impact of waterborne copper on the structure of gills and hepatopancreas and its impact on the content of metallothionein in juvenile giant freshwater prawn Macrobrachium rosenbergii (Crustacea: Decapoda). Arch. Environ. Contam. Toxicol., 52, 73-79.

    • Search Google Scholar
    • Export Citation
  • Loizzi R.F. (1971) Interpretation of crayfish hepatopancreatic function based on fine structural analysis of epithelial cell lines and muscle network. Cell Tissue Res., 133, 420-440.

    • Search Google Scholar
    • Export Citation
  • Luoma S.N., Rainbow P.S. (2005) Why is metal bioaccumulation so variable? Biodynamics as a unifying concept. Environ. Sci. Technol., 39, 1921-1931.

    • Search Google Scholar
    • Export Citation
  • Manisseri M.K., Menon N.R. (1995) Copper-induced damage to the hepatopancreas of the penaeid shrimp Metapenaeus dobsoni – an ultrastructural study. Dis. Aquat. Org., 22, 51-57.

    • Search Google Scholar
    • Export Citation
  • Martin P., Dorn N.J., Kwawai T., Van der Heiden C., Scholtz G. (2010) The enigmatic Marmorkrebs (marbled crayfish) is the parthenogenetic form of Procambarus fallax (Hagen, 1870). Contr. Zoology, 79, 107-118.

    • Search Google Scholar
    • Export Citation
  • Martins C.M.G., Barcarolli I.F., de Menezes E.J., Giacomin M.M., Wood C.M., Bianchini A. (2011) Acute toxicity, accumulation and tissue distribution of copper in the blue crab Callinectes sapidus acclimated to different salinities: in vivo and in vitro studies. Aquat. Toxicol., 101, 88-99.

    • Search Google Scholar
    • Export Citation
  • Pulver S.R., Thirumalai V., Richards K.S., Marder E. (2003) Dopamine and histamine in developing stomatogastric system of lobster Homarus americanus. J. Comp. Neurol., 462, 400-414.

    • Search Google Scholar
    • Export Citation
  • Reddy R., Pillai B.R., Adhikari S. (2006) Bioaccumulation of copper in post-larvae and juveniles of freshwater prawn Macrobachium rosenbergii (de Man) exposed to sub-lethal levels of copper sulfate. Aquaculture, 252, 356-360.

    • Search Google Scholar
    • Export Citation
  • Sastre M.P., Reyes P., Ramos H., Romero R., Rivera J. (1999) Heavy metal bioaccumulation in Puerorican blue crabs (Callinectes spp.). Bull. Mar. Sci., 64, 209-217.

    • Search Google Scholar
    • Export Citation
  • Sato T., Horiuchi T., Nishimura I. (2005) Simple and rapid determination of histamine in food using a new histamine dehydrogenase from Rhizobium sp. Anal. Biochem., 346, 320-326.

    • Search Google Scholar
    • Export Citation
  • Soedarini B., Klaver L., Roessink I., Widianarko B., Van Straalen N.M., Van Gestel C.A.M. (2012) Copper kinetics and internal distribution in the marbled crayfish (Procambarus sp.). Chemosphere, 87, 333-338.

    • Search Google Scholar
    • Export Citation
  • Spehar R.L., Anderson R.L., Fiandt J.T. (1978) Toxicity and bioaccumulation of cadmium and lead in aquatic invertebrates. Environ. Pollut., 15, 195-208.

    • Search Google Scholar
    • Export Citation
  • Taylor S.L., Stratton J.E., Nordlee J.A. (1989) Histamine poisoning (scombroid fish poisoning): an allergy-like intoxication. Clin. Toxicol., 27, 225-240.

    • Search Google Scholar
    • Export Citation
  • Veltman K., Huijbregts M.A.J., van Kolck M., Wang W.X., Hendriks A.J. (2008) Metal bioaccumulation in aquatic species: quantification of uptake and elimination rate constants using physicochemical characteristics of metals and physiological characteristics of species. Environ. Sci. Technol., 42, 852-858.

    • Search Google Scholar
    • Export Citation

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 113 75 1
Full Text Views 120 0 0
PDF Downloads 4 0 0