Too big to fly? An engineering evaluation of the fossil biology of the giant birds of the Miocene in relation to their flight limitations, constraining the minimum air pressure at about 1.3 bar

In: Animal Biology
View More View Less
  • 1 ISIPU Istituto Italiano di Paleontologia Umana, Roma, Italy

Purchase instant access (PDF download and unlimited online access):

$30.00

Abstract

The fossil biology of flight is one of the few options available for obtaining information on the density of past atmospheres. The giant birds of the Miocene, the 70 kg teratorn Argentavis magnificens and the giant Pelagornithidae with wingspans of 6.5 m or more, have long intrigued bird specialists, leading one researcher, Colin Pennycuick, to hypothesize that a higher air density may have been necessary for these birds to fly. To test this hypothesis, previous mass estimates and wing shapes of these birds are reviewed and the revised values used in the Flight 1.25 bird simulation program to investigate and quantify in engineering terms the limitations of flight in the present atmosphere as well as in hypothetical higher densities. The results indicate that Pennycuick was probably right: the available takeoff power for a gorged teratorn in an atmosphere of 1 bar is too low and attempts at level takeoff could involve a high risk of injury; The giant Pelagornithidae would have had enough power for takeoff, but flapping bone stress at 1 bar would also have been critical. Simulations indicate that for both birds, power and bone stress constraints are overcome at about 1.3 bar, also enhancing the dynamic soaring of the Pelagornithidae. This level of atmospheric pressure would imply a different climate than the present, but is consistent with the data on average global temperatures for the Miocene before the Late Cooling Events, as well as with the polar to equator temperature gradient.

  • Berner, R.A. (2006) GEOCARBSULF: a combined model for Phanerozoic atmospheric O2 and CO2. Geochim. Cosmochim. Acta, 70, 5653-5664.

  • Biewener, A.A. & Dial, K.P. (1995) In vivo strain in the humerus of pigeons (Columba livia) during flight. J. Morphol., 225, 61-75.

  • Blume, R. (2006) Flight test of gliders and powered gliders. Tech. Soar., 30, 2-9.

  • Campbell, K.E. (1995) Additional specimens of the giant teratorn. Argentavis magnificens, from Argentina (Aves: Teratornithidae). Cour. Forschung. Senckenberg, 181, 199-201.

    • Search Google Scholar
    • Export Citation
  • Campbell, K.E. & Marcus Jr, L. (1990) How big was it? Determining the size of ancient birds. Terra, 28, 33-43.

  • Campbell, K.E. & Tonni, E.P. (1980) A new genus of Teratorn from the Huayquerian of Argentina [Aves: Teratornithidae]. Contrib. Sci. Nat. Hist. Mus. Los Angel. Cty, 330, 59-68.

    • Search Google Scholar
    • Export Citation
  • Campbell, K.E. & Tonni, E.P. (1983) Size and locomotion in teratorns (Aves: Terathornitidae). Auk, 100, 390-403.

  • Camuffo, D. (2019) Microclimate for Cultural Heritage. 3rd Edition. Elsevier, Amsterdam.

  • Cannell, A.E.R. (2018) The engineering of the giant dragonflies of the Permian: revised body mass, power, air supply, thermoregulation and the role of air density. J. Exp. Biol., 221, jeb185405. DOI:10.1242/jeb.185405.

    • Search Google Scholar
    • Export Citation
  • Cenizo, M., Hospitaleche, C.A. & Reguero, M. (2016) Diversity of pseudo-toothed birds (Pelagornithidae) from the Eocene of Antarctica. J. Paleontol., 89, 870-881.

    • Search Google Scholar
    • Export Citation
  • Chatterjee, S., Templin, R.J. & Campbell, K.E. (2007) The aerodynamics of Argentavis, the world’s largest flying bird from the Miocene of Argentina. Proc. Natl Acad. Sci. USA, 104, 12398-12403.

    • Search Google Scholar
    • Export Citation
  • Chemke, R., Kaspi, Y. & Halevy, I. (2016) The thermodynamic effect of atmospheric mass on early Earth’s temperature. Geophys. Res. Lett., 43, 11,414-11,422.

    • Search Google Scholar
    • Export Citation
  • Chien, C.-Y. (2009) Comparison of wind speed and wind stress in the Southern Ocean. MSc thesis, Florida State University, Tallahassee, FL, USA. Retrieved from http://purl.flvc.org/fsu/fd/FSU_migr_etd-3818.

  • Conesa García, C., Álvarez Rogel, Y. & Martínez Guevara, J.B. (2004) Medio Ambiente, Recursos y Riesgos Naturales: Análisis Mediante Tecnología SIG y Teledetección. Vol 1. Universidad de Murcia, Spain.

    • Search Google Scholar
    • Export Citation
  • Degrange, F.J., Tambussi, C.P., Moreno, K., Witmer, L.M. & Wroe, S. (2010) Mechanical analysis of feeding behavior in the extinct “terror bird” Andalgalornis steulleti (Gruiformes: Phorusrhacidae). PLoS ONE, 5, e11856. DOI:10.1371/journal.pone.0011856.

    • Search Google Scholar
    • Export Citation
  • Duriez, O., Herman, S. & Sarrazin, F. (2012) Intra-specific competition in foraging Griffon Vultures Gyps fulvus: 2. The influence of supplementary feeding management. Bird Study, 59, 193-206.

    • Search Google Scholar
    • Export Citation
  • Elzanowski, A., Bieńkowska-Wasiluk, M., Chodyń, R. & Bogdanowicz, W. (2012) Anatomy of the coracoid and diversity of the Procellariiformes (Aves) in the Oligocene of Europe. Palaeontology, 55, 1199-1221.

    • Search Google Scholar
    • Export Citation
  • Evenstar, L.A., Stuart, F.A., Hartley, A.J. & Tattitch, B. (2015) Slow Cenozoic uplift of the western Andean Cordillera indicated by cosmogenic 3He in alluvial boulders from the Pacific Planation Surface. Geophys. Res. Lett., 42, 8448-8455.

    • Search Google Scholar
    • Export Citation
  • Field, D.J., Lynner, C., Brown, C. & Darroch, S.A.F. (2013) Skeletal correlates for body mass estimation in modern and fossil flying birds. PLoS ONE, 8, e82000. DOI:10.1371/journal.pone.0082000.

    • Search Google Scholar
    • Export Citation
  • Hainsworth, F.R. (1988) Induced drag savings from ground effect and formation flight in brown pelicans. J. Exp. Biol., 135, 431-444.

  • Hamershock, D.M., Seamans, T.W. & Bernhardt, G.E. (1993) Determination of Body Density for Twelve Bird Species. Report Number WL-TR-93-3049. Flight Dynamics Directorate, Wright Laboratory AFMC, Wright-Patterson AFB, OH, USA.

  • Heinrich, B. (1993) The Hot-Blooded Insects: Strategies and Mechanisms of Thermoregulation. Harvard University Press, Cambridge, MA, USA.

    • Search Google Scholar
    • Export Citation
  • Herbert, T.D., Lawrence, K.T., Tzanova, A., Peterson, L.C., Caballero-Gill, R. & Kelly, C.S. (2016) Late Miocene global cooling and the rise of modern ecosystems. Nat. Geosci., 9, 843-847.

    • Search Google Scholar
    • Export Citation
  • Johansson, L.C., Jakobsen, L. & Hedenstrom, A. (2018) Flight in ground effect dramatically reduces aerodynamic costs in bats. Curr. Biol., 28, 3502-3507.

    • Search Google Scholar
    • Export Citation
  • Johnson, B.W. & Goldblatt, C. (2018) EarthN: a new Earth system nitrogen model. Geochem. Geophys. Geosyst., 19, 2516-2542.

  • Kirkpatrick, S.J. (1994) Scale effects on the stresses and safety factors in the wing bones of birds and bats. J. Exp. Biol., 190, 195-215.

    • Search Google Scholar
    • Export Citation
  • Ksepka, D.T. (2014) Flight performance of the largest volant bird. Proc. Natl Acad. Sci. USA, 111, 10624-10629.

  • Mayr, G. & Rubilar-Rogers, D. (2010) Osteology of a new giant bony-toothed bird from the Miocene of Chile with a revision of the taxonomy of Neogene Pelagornithidae. J. Vert. Paleontol., 30, 1313-1330.

    • Search Google Scholar
    • Export Citation
  • McGahan, J. (1973) Flapping flight of the Andean condor in nature. J. Exp. Biol., 58, 239-253.

  • McNeill Alexander, R. (2010) Response to “Moving on from Kirkpatrick (1994): estimating ‘safety factors’ for flying vertebrates”. J. Exp. Biol., 213, 2175.

    • Search Google Scholar
    • Export Citation
  • Mendelsohn, J.M., Kemp, A.C., Biggs, H.C., Biggs, R. & Brown, C.J. (1989) Wing areas, wing loadings and wing spans of 66 species of African raptors. Ostrich, 60, 35-42.

    • Search Google Scholar
    • Export Citation
  • Palmer, C. & Dyke, G.J. (2010) Moving on from Kirkpatrick (1994): estimating ‘safety factors’ for flying vertebrates. J. Exp. Biol., 213, 2174.

    • Search Google Scholar
    • Export Citation
  • Palmqvist, P. & Vizcaíno, S.F. (2003) Ecological and reproductive constraints of body size in the gigantic Argentavis magnificens (Aves, Theratornithidae) from the Miocene of Argentina. Ameghiniana (Rev. Asoc. Paleontol. Argent.), 40, 379-385.

    • Search Google Scholar
    • Export Citation
  • Pennycuick, C.J. (1967) The strength of the pigeon’s wing bones in relation to their function. J. Exp. Biol., 46, 219-233.

  • Pennycuick, C.J. (1982) The flight of petrels and albatrosses (procellariiformes). observed in south Georgia and its vicinity. Phil. Trans. R. Soc. Lond. B Biol. Sci., 300, 75-106.

    • Search Google Scholar
    • Export Citation
  • Pennycuick, C.J. (1983) Thermal soaring compared in three dissimilar tropical bird species: Fregata magnificens, Pelecanus occidentalis and Coragyps atratus. J. Exp. Biol., 102, 307-325.

    • Search Google Scholar
    • Export Citation
  • Pennycuick, C.J. (1996) Stress and strain in the flight muscles as constraints on the evolution of flying animals. J. Biomech., 29, 577-581.

    • Search Google Scholar
    • Export Citation
  • Pennycuick, C.J. (2008) Modelling the Flying Bird. Academic Press, Burlington, MA, USA.

  • Rayner, J.M.V. (1991) On the aerodynamics of animal flight in ground effect. Phil. Trans. R. Soc. Lond. B Biol. Sci., 334, 119-128.

  • Richardson, P.L., Wakefield, E.D. & Phillips, R.A. (2018) Flight speed and performance of the wandering albatross with respect to wind. Mov. Ecol., 6, 3. DOI:10.1186/s40462-018-0121-9.

    • Search Google Scholar
    • Export Citation
  • Rimmer, P.B., Shorttle, O. & Rugheimer, S. (2019) Oxidised micrometeorites as evidence for low atmospheric pressure on the early Earth. Geochem. Perspect. Lett., 9, 38-42. DOI:10.7185/geochemlet.1903.

    • Search Google Scholar
    • Export Citation
  • Rohwer, S., Ricklefs, R.E., Rohwer, V.G. & Copple, M.M. (2009) Allometry of the duration of flight feather molt in birds. PLoS Biol., 7, e1000132. DOI:10.1371/journal.pbio.1000132.

    • Search Google Scholar
    • Export Citation
  • Sachs, G., Traugott, J., Nesterova, A.P., Dell’Omo, G., Kümmeth, F., Heidrich, W., Vysotski, A.L. & Bonadonna, F. (2012) Flying at no mechanical energy cost: disclosing the secret of wandering albatrosses. PLoS ONE, 7, e41449. DOI:10.1371/journal.pone.0041449.

    • Search Google Scholar
    • Export Citation
  • Sato, K., Sakamoto, K.Q., Watanuki, Y., Takahashi, A., Katsumata, N., Bost, C.-A. & Weimerskirch, H. (2009) Scaling of soaring seabirds and implications for flight abilities of giant pterosaurs. PLoS ONE, 4, e5400. DOI:10.1371/journal.pone.0005400.

    • Search Google Scholar
    • Export Citation
  • Schlichting, H.E. & Mukhopadhyay, S. (2018) Atmosphere impact losses. Space Sci. Rev., 214, 34. DOI:10.1007/s11214-018-0471-z.

  • Som, S.M., Buick, R., Hagadorn, J.W., Blake, T.S., Perreault, J.M., Harnmeijer, J.P. & Catling, D.C. (2016) Earth’s air pressure 2.7 billion years ago constrained to less than half of modern levels. Nat. Geosci., 9, 448-451.

    • Search Google Scholar
    • Export Citation
  • Steenken, A., López de Luchi, M.G., Martínez Dopico, C., Drobe, M., Wemmer, K. & Siegesmund, S. (2011) The Neoproterozoic-early Paleozoic metamorphic and magmatic evolution of the Eastern Sierras Pampeanas: an overview. Int. J. Earth Sci., 100, 465-488.

    • Search Google Scholar
    • Export Citation
  • Steunebrink, M., De Winter, D. & Tol, J.L. (2008) Bilateral stress fracture of the ulna in an adult weightlifter: a case report. Acta Orthop. Belg., 74, 851-855.

    • Search Google Scholar
    • Export Citation
  • Sullivan, T.N., Wang, B., Espinosa, H.D. & Meyer, M.A. (2017) Extreme lightweight structures: avian feathers and bones. Mater. Today, 20, 377-391.

    • Search Google Scholar
    • Export Citation
  • Swartz, S., Bennett, M.B. & Carrier, D.R. (1992) Wing bone stresses in free flying bats and the evolution of skeletal design for flight. Nature, 359, 726-729.

    • Search Google Scholar
    • Export Citation
  • Vizcaíno, S.F. & Fariña, R.A. (1999) On the flight capabilities and distribution of the giant Miocene bird Argentavis magnificens (Teratornithidae). Lethaia, 32, 271-278.

    • Search Google Scholar
    • Export Citation
  • Warham, J. (1977) Wing loadings, wing shapes. and flight capabilities of procellariiformes. N. Z. J. Zool., 4, 73-83.

  • Wei, Y., Pu, Z., Zong, Q., Wan, W., Ren, Z., Fraenz, M., Dubinin, E., Tian, F., Shi, Q., Fu, S. & Hong, M. (2014) Oxygen escape from the Earth during geomagnetic reversals: implications to mass extinction. Earth Planet. Sci. Lett., 394, 94-98.

    • Search Google Scholar
    • Export Citation
  • Xiang, Z., Ni, B., Zhou, C., Zou, Z., Gu, X., Zhao, Z., Zhang, X., Zhang, X., Zhang, S., Li, X., Zuo, P., Spence, H. & Reeves, G. (2016) Multi-satellite simultaneous observations of magnetopause and atmospheric losses of radiation belt electrons during an intense solar wind dynamic pressure pulse. Ann. Geophys., 34, 493-509.

    • Search Google Scholar
    • Export Citation
  • Yonehara, Y., Goto, Y., Yoda, K., Watanuki, Y., Young, L.C., Weimerskirch, H., Bost, C.-A. & Sato, K. (2016) Flight paths of seabirds soaring over the ocean surface enable measurement of fine-scale wind speed and direction. Proc. Natl Acad. Sci. USA, 113, 9039-9044.

    • Search Google Scholar
    • Export Citation

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 759 759 19
Full Text Views 22 22 1
PDF Downloads 12 12 1