Mating system and population analysis of the broad-snouted caiman (Caiman latirostris) using microsatellite markers

In: Amphibia-Reptilia

The knowledge about reproductive strategies of a species contributes to their conservation. Multiple paternity is a reproductive behavior increasing effective population size, which could increase genetic diversity particularly in populations submitted to bottlenecks events. In Argentina, wild populations of Caiman latirostris are subject of a management plan devoted to their preservation and sustainable utilization based on its commercial interest. This program started in response to the evident numeric reduction of the populations, as a consequence of hunting pressure and habitat modification; it had a remarkable success in population recovery allowing the commercial use of C. latirostris. Data on reproductive behavior of C. latirostris are limited because mating occurs in the water and the information about their genetic diversity is scarce too. Our specific aims were to study the mating system and population genetic structure applying microsatellite markers in twelve C. latirostris families. The obtained results showed highly significant difference among populations and a lack of correspondence between geographical distance and genetic differentiation suggesting that populations of C. latirostris represent unstable metapopulations. In the paternity analysis was detected more than one father in two nests, which could be explained by capacity of storage sperm, proposed in females of a related species. The behavior of multipaternity could contribute to maintain viable populations of C. latirostris, since the maintenance of genetic variability within populations could help increase their capacity to respond to selective pressure. Further studies employing genetic and behavioral framework are needed to better understand the reproductive biology of C. latirostris.

  • AdamsE.M.JonesA.G.ArnoldS.J. (2005): Multiple paternity in a natural population of a salamander with long-term sperm storage. Mol. Ecol. 14: 1803- 1810.

    • Search Google Scholar
    • Export Citation
  • AdamsS.E.SmithM.H.BaccusR. (1980): Biochemical variation in the American alligator (Alligator mississippiensis). Herpetologica 36: 289- 296.

    • Search Google Scholar
    • Export Citation
  • AmavetP.S.RossoE.L.MarkarianiR.M.LarrieraA. (2007): Analysis of the population structure of Broad-Snouted Caiman (Caiman latirostris) in Santa Fe, Argentina, using the RAPD technique. J. Herpetol. 41: 285- 295.

    • Search Google Scholar
    • Export Citation
  • AmavetP.RossoE.MarkarianiR.PiñaC.I. (2008): Microsatellite DNA markers applied to detection of multiple paternity in Caiman latirostris in Santa Fe, Argentina. J. Exp. Zool. 309A: 637- 642.

    • Search Google Scholar
    • Export Citation
  • AmavetP.VilardiJ.C.RossoE.SaidmanB. (2009): Genetic and morphometric variability in Caiman latirostris (broad-snouted caiman), Reptilia, Alligatoridae. J. Exp. Zool. 311A: 258- 269.

    • Search Google Scholar
    • Export Citation
  • BassamB.J.Caetano-AnollesG.GresshoffP.M. (1991): Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal. Biochem. 196: 80- 83.

    • Search Google Scholar
    • Export Citation
  • BerryO.F. (2006): Inbreeding and promiscuity in the endangered grand skink. Cons. Genet. 7: 427- 437.

  • BrufordM.W.WayneR.K. (1993): Microsatellites and their application to population genetic studies. Curr. Opin. Genet. Dev. 3: 939- 943.

    • Search Google Scholar
    • Export Citation
  • DavenportM. (1995): Evidence of possible sperm storage in the Caiman, Paleosuchus palpebrosus. Herp. Rev. 26: 14- 15.

  • DavisL.M.GlennT.C.ElseyR.M.BrisbinI.L.Jr.RhodesW.E.DessauerH.C.SawyerR.H. (2000): Genetic structure of six populations of American alligators: a microsatellite analysis. In: Crocodilian Biology Evolution , p.  38- 50. GriggG.SeebacherF.FranklinC.E., Eds, Chipping Norton, Surrey Beatty and Sons.

    • Search Google Scholar
    • Export Citation
  • DavisL.M.GlennT.C.ElseyR.M.DessauerH.C.SawyerR.H. (2001): Multiple paternity and mating patterns in the American alligator, Alligator mississippiensis. Mol. Ecol. 10: 1011- 1024.

    • Search Google Scholar
    • Export Citation
  • DavisL.M.GlennT.C.StricklandD.C.GuilletteL.J.Jr.ElseyR.M.RhodesW.E.DessauerH.C.SawyerR.H. (2002): Microsatellite DNA analysis support an east-west phylogeographic split of American alligator populations. J. Exp. Zool. 294: 352- 372.

    • Search Google Scholar
    • Export Citation
  • de OliveiraD.P.FariasI.P.MarioniB.CamposZ.HrbekT. (2010): Microsatellite markers for mating system and population analyses of the spectacled caiman Caiman crocodilus (Linnaeus 1758). Conserv. Genet. Resour. 2: 181- 184.

    • Search Google Scholar
    • Export Citation
  • de ThoisyB.HrbekT.FariasI.P.VasconcelosW.R.LavergneA. (2006): Genetic structure, population dynamics, and conservation of Black caiman (Melanosuchus niger). Biol. Conserv. 133: 474- 482.

    • Search Google Scholar
    • Export Citation
  • DensmoreL.D.IIIWhiteP.S. (1991): The systematic and evolution of the Crocodylia as suggested by restriction endonuclease analysis of mitochondrial and nuclear ribosomal DNA. Copeia 3: 602- 615.

    • Search Google Scholar
    • Export Citation
  • DeverJ.A.StraussR.E.RainwaterT.R.McMurryS.T.DensmoreL.R. (2002): Genetic diversity, population subdivision, and gene flow in Morelet’s Crocodile (Crocodylus moreletii) from Belize, Central America. Copeia 2002: 1078- 1091.

    • Search Google Scholar
    • Export Citation
  • DrayS.DufourA.B. (2007): The ade4 package: implementing the duality diagram for ecologists. J. Stat. Soft. 22: 1- 20.

  • DunnP.O.LifjeldJ.T.WhittinghamL.A. (2009): Multiple paternity and offspring quality in tree swallows. Behav. Ecol. Sociobiol. 63: 911- 922.

    • Search Google Scholar
    • Export Citation
  • EllegrenH. (2004): Microsatellites: simple sequences with complex evolution. Nat. Rev. Genet. 5: 435- 445.

  • FariasI.P.Da SilveiraR.de ThoisyB.MonjelóL.A.ThonrbjarnarsonJ.HrbekT. (2004): Genetic diversity and population structure of Amazonian crocodilians. Animal Conserv. 7: 265- 272.

    • Search Google Scholar
    • Export Citation
  • FitzsimmonsN.N.TanksleyS.ForstnerM.R.J.LouisE.E.DaglishR.GrattenJ.DavisS. (2000): Microsatellite markers for Crocodylus: new genetic tools for population genetics, mating system studies and forensics. In: Crocodilian Biology Evolution , p.  51- 57. GriggG.SeebacherF.FranklinC.E., Eds, Chipping Norton, Surrey Beatty and Sons.

    • Search Google Scholar
    • Export Citation
  • FitzsimmonsN.BuchanJ.C.LamP.V.PoletG.HungT.T.ThangN.Q.GrattenJ. (2002): Identification of purebred Crocodylus siamensis for reintroduction in Vietnam. J. Exp. Zool. 294: 373- 381.

    • Search Google Scholar
    • Export Citation
  • FlintN.S.van der BankF.H.GroblerJ.P. (2000): A lack of genetic variation in commercially bred Nile Crocodiles (Crocodylus niloticus) in the North-West Province of South Africa. Water SA 26: 105- 110.

    • Search Google Scholar
    • Export Citation
  • ForstnerM.R.J.FortsnerJ.M.K. (2002): La utilidad del ADN en la conservación de los Crocodylia. In: Conservação e Manejo de Jacarés e Cocodrilos da America Latina – La Conservación y el Manejo de Caimanes y Cocodrilos de América Latina , Vol. II, p. 99- 117. LarrieraA.VerdadeL., Eds, Piracicaba, CN Editoria.

    • Search Google Scholar
    • Export Citation
  • FrankhamR. (2005): Genetics and extinction. Biol. Conserv. 126: 131- 140.

  • GartsideD.F.DessauerH.C.JoanenT. (1976): Genic homozygosity in an ancient reptile (Alligator mississippiensis). Biochem. Genet. 15: 655- 663.

    • Search Google Scholar
    • Export Citation
  • GistD.H.BagwillA.LanceV.SeverD.M.ElseyR.M. (2008): Sperm storage in the oviduct of the American alligator. J. Exp. Zool. 309A: 581- 587.

    • Search Google Scholar
    • Export Citation
  • GlennT.C.DessauerH.C.BraunM.J. (1998): Characterization of microsatellite DNA loci in American Alligators. Copeia 1998: 591- 601.

  • GlennT.C.StatonJ.L.VuA.T.DavisL.M.Alvarado BremerJ.R.RhodesW.E.BrisbinL.Jr.SawyerR.H. (2002): Low mitochondrial DNA variation among American alligators and a novel non-coding region in crocodilians. J. Exp. Zool. 294: 312- 324.

    • Search Google Scholar
    • Export Citation
  • GoodmanS.J. (1997): RST Calc: a collection of computer programs for calculating estimates of genetic differentiation from microsatellite data and determining their significance. Mol. Ecol. 6: 881- 885.

    • Search Google Scholar
    • Export Citation
  • GottelliD.WangJ.L.BashirS.DurantS.M. (2007): Genetic analysis reveals promiscuity among female cheetahs. Proc. Roy. Soc Lond. Ser. B: Biol. Sci. 274: 1993- 2001.

    • Search Google Scholar
    • Export Citation
  • HrbekT.VasconcelosW.R.RebeloG.FariasI.P. (2008): Phylogenetic relationships of South American Alligatorids and the Caiman of Madeira River. J. Exp. Zool. 309A: 588- 599.

    • Search Google Scholar
    • Export Citation
  • HuY.WuX.B. (2010): Multiple paternity in Chinese alligator (Alligator sinensis) clutches during a reproductive season at Xuanzhou Nature Reserve. Amph. Rept. 31: 419- 424.

    • Search Google Scholar
    • Export Citation
  • IsbergS.R.ChenY.BarkerS.G.MoranC. (2004): Analysis of microsatellites and parentage testing in saltwater crocodiles. J. Hered. 95: 445- 449.

    • Search Google Scholar
    • Export Citation
  • JensenM.P.Abreu-GroboisF.A.FrydenbergJ.LoeschckeV. (2006): Microsatellites provide insight into contrasting mating patterns in arribada vs. non-arribada olive ridley sea turtle rookeries. Mol. Ecol. 15: 2567- 2575.

    • Search Google Scholar
    • Export Citation
  • JonesA.G. (2005): GERUD 2.0: A computer program for the reconstruction of parental genotypes from half-sib progeny arrays with known or unknown parents. Mol. Ecol. Notes 5: 708- 711.

    • Search Google Scholar
    • Export Citation
  • JonesA.G.ArdrenW.R. (2003): Methods of parentage analysis in natural populations. Mol. Ecol. 12: 2511- 2523.

  • JurgensA.KrugerJ.van der BankF.H. (1994): Allozyme variation in the Nile crocodile (Crocodylus niloticus) from Southern Africa. In: Crocodiles. Proceedings of the 12th Working Meeting of the Crocodile Specialist Group , p.  72- 76. Gland, IUCN – The World Conservation Union.

    • Search Google Scholar
    • Export Citation
  • KitchenA.M.GeseE.M.WaitsL.P.KarkiS.M.SchausterE.R. (2006): Multiple breeding strategies in the swift fox, Vulpes velox. Animal Behav. 71: 1029- 1038.

    • Search Google Scholar
    • Export Citation
  • LandeR.ShannonS. (1996): The role of genetic variation in adaptation and population persistence in a changing environment. Evolution 50: 434- 437.

    • Search Google Scholar
    • Export Citation
  • LangJ.W. (1989): Social behavior. In: Crocodiles and Alligators , p.  102- 117. RossC.A., Ed., New York, Facts on File Inc.

  • LarrieraA. (1992): La conservación y el manejo de Caiman latirostris en la Argentina. In: Anais do II Workshop sobre Conservaçao e Manejo do Jacaré-de-Papo-Amarelo (Caiman latirostris) , p.  8- 17. VerdadeL.M.LavorentiA., Eds, Piracicaba, CIZBAS/ESALQ, Universidade de Sao Paulo.

    • Search Google Scholar
    • Export Citation
  • LarrieraA. (1998): The Caiman latirostris ranching program in Santa Fe, Argentina: The first commercial rearing 1998. In:  Crocodiles. Proceedings of the 14th Working Meeting of the Crocodile Specialist Group , p.  379- 385. Gland, IUCN – The World Conservation Union.

    • Search Google Scholar
    • Export Citation
  • LarrieraA. (2002): Caiman latirostris (Broad-snouted Caiman). Communal nesting. Herpetol. Rev. 33: 202.

  • LarrieraA.ImhofA.SiroskiP. (2008): Estado actual de los programas de conservación y manejo del género Caiman en Argentina. In: Contribución al conocimiento del Género Caiman de Suramérica , p. 143- 179. CastroviejoJ.AyarzagüenaJ.VelascoA., Eds, Madrid, Publicaciones Asociación Amigos de Doña Ana.

    • Search Google Scholar
    • Export Citation
  • LawsonR.KofronC.P.DessauerH.C. (1989): Allozyme variation in a natural population of the Nile Crocodile. Amer. Zool. 29: 863- 871.

  • LeislerB.WinkM. (2000): Frequencies of multiple paternity in three Acrocephalus species (Aves Sylviidae) with different mating systems (A. palustris, A. arundinaceus, A. paludicola). Ethol. Ecol. Evol. 12: 237- 249.

    • Search Google Scholar
    • Export Citation
  • LongmireJ.L.LewisA.K.BrownN.C.BuckinghamJ.M.ClarkL.M.JonesM.D.MeinckeL.J.MeyneJ.RatliffR.L.RayF.A.WagnerR.P.MoyzisR.K. (1988): Isolation and molecular characterization of a highly polymorphic centromic tandem repeat in the family Falconidae. Genomics 2: 14- 24.

    • Search Google Scholar
    • Export Citation
  • MadsenT.UjvariB.OlssonM.ShineR. (2005): Paternal alleles enhance female reproductive success in tropical pythons. Mol. Ecol. 14: 1783- 1787.

    • Search Google Scholar
    • Export Citation
  • MarshallT.C.SlateJ.KruukL.PembertonJ.M. (1998): Statistical confidence for likelihood-based paternity inference in natural populations. Mol. Ecol. 7: 639- 655.

    • Search Google Scholar
    • Export Citation
  • McVayJ.D.RodriguezD.RainwaterT.R.DeverJ.A.PlattS.G.McMurryS.T.ForstnerM.R.J.DensmoreL.D. (2008): Evidence of multiple paternity in Morelet’s Crocodile (Crocodylus moreletii) in Belize, CA, inferred from microsatellite markers. J. Exp. Zool. 309A: 643- 648.

    • Search Google Scholar
    • Export Citation
  • MenziesR.A.KushlanJ.DessauerH.C. (1979): Low degree of genetic variability in the American alligator. Isozyme Bull. 12: 61.

  • MunizF.L.Da SilveiraR.CamposZ.MagnussonW.E.HrbekT.FariasI.P. (2011): Multiple paternity in the Black Caiman (Melanosuchus niger) population in the Anavilhanas National Park, Brazilian Amazonia. Amph. Rept. 32: 428- 434.

    • Search Google Scholar
    • Export Citation
  • MurrayM.G.ThompsonW.F. (1980): Rapid isolation of high molecular weight plant DNA. Nuc. Ac. Res. 8: 4321- 4325.

  • MyersE.M.ZamudioK.R. (2004): Multiple paternity in an aggregate breeding amphibian: the effect of reproductive skew on estimates of male reproductive success. Mol. Ecol. 13: 1951- 1963.

    • Search Google Scholar
    • Export Citation
  • Porras MurilloL.P.BolañosJ.R.BarrB.R. (2008): Variación genética y flujo de genes entre poblaciones de Crocodylus acutus (Crocodylia: Crocodylidae) en tres ríos del Pacífico Central, Costa Rica. Rev. Biol. Trop. 56: 1471- 1480.

    • Search Google Scholar
    • Export Citation
  • QuellerD.C.StrassmannJ.E.HughesC.R. (1993): Microsatellites and kinship. Trends Ecol. Evol. 8: 285- 288.

  • R Development Core Team (2011): R: A Language and Environment for Statistical Computing . Vienna, R Foundation for Statistical Computing. http://www.R-project.org/. Accessed 20 June 2011 .

    • Search Google Scholar
    • Export Citation
  • RayD.A.WhiteP.S.DuongH.V.CullenT.DensmoreL.D. (2000): High levels of genetic variability in west African dwarf crocodiles Osteolaemus tetraspis tetraspis. In: Crocodilian Biology and Evolution , p.  58- 63. GriggG.SeebacherF.FranklinC.E., Eds, Chipping Norton, Surrey Beatty and Sons.

    • Search Google Scholar
    • Export Citation
  • SuggD.W.ChesserR.K. (1994): Effective population size with multiple paternity. Genetics 137: 1147- 1155.

  • TautzD.C.SchlöttererC. (1994): Simple sequences. Curr. Opin. Genet. Dev. 4: 832- 837.

  • ThorbjarnarsonJ. (1999): Crocodile tears and skins: International trade, economic constraints and limits to the sustainable use of crocodilians. Cons. Biol. 13: 465- 470.

    • Search Google Scholar
    • Export Citation
  • TournS.ImhofA.CostaA.L.von FinckM.C.LarrieraA. (1993): Colecta de sangre y procesamiento de muestras en Caiman latirostris (Informe de avance). In: Memorias del IV Workshop sobre Conservación y Manejo del yacaré overo (Caiman latirostris) , p. 25- 30. LarrieraA.ImhofA.von FinckM.C.CostaA.L.TournS.C., Eds, Santa Fe, Fundación Banco Bica.

    • Search Google Scholar
    • Export Citation
  • VerdadeL.M.ZucolotoR.B.CoutinhoL.L. (2002): Microgeographic variation in Caiman latirostris. J. Exp. Zool. 294: 387- 396.

  • VillelaP.M.S. (2004): Caracterização genética de populações de jacaré-de-papo-amarelo (Caiman latirostris), utilizando marcadores microssatélites. Unpubl. Mg. Thesis, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo.

  • VillelaP.M.S.CoutinhoL.L.PiñaC.I.VerdadeL.M. (2008): Macrogeographic genetic variation in broad-snouted caiman (Caiman latirostris). J. Exp. Zool. 309A: 628- 636.

    • Search Google Scholar
    • Export Citation
  • WeaverJ.P.RodriguezD.Venegas-AnayaM.Cedeño-VázquezJ.R.ForstnerM.J.R.DensmoreL.D.III (2008): Genetic characterization of captive Cuban crocodiles (Crocodylus rhombifer) and evidence of hybridization with the American crocodile (Crocodylus acutus). J. Exp. Zool. 309A: 649- 660.

    • Search Google Scholar
    • Export Citation
  • WeirL.K.BreauC.HutchingsJ.A.CunjakR.A. (2010): Multiple paternity and variance in male fertilization success within Atlantic salmon Salmo salar redds in a naturally spawning population. J. Fish Biol. 77: 479- 493.

    • Search Google Scholar
    • Export Citation
  • WhiteP.S.DensmoreL.D. (1992): Mitochondrial DNA isolation. In: Molecular Genetic Analysis of Populations. A Practical Approach . The Practical Approach Series, p. 29- 57. HoelzelA.R., Ed., Oxford, Oxford University Press.

    • Search Google Scholar
    • Export Citation
  • WrightS. (1969): Evolution and the Genetics of Populations II . The Theory of Gene Frequencies, Vol. 2. Chicago, University of Chicago Press.

    • Search Google Scholar
    • Export Citation
  • WuX.B.WangY.Q.ZhouK.Y.ZhuW.Q.NieJ.S.WangC.L.XieW.S. (2002): Genetic variation in captive population of Chinese alligator, Alligator sinensis, revealed by random amplified polymorphic DNA (RAPD). Biol. Conserv. 106: 435- 441.

    • Search Google Scholar
    • Export Citation
  • ZucolotoR.B. (2003): Desenvolvimento de seqüencias de DNA microssatélite para estudo de populações remanescentes de Jacaré-de-Papo Amarelo (Caiman latirostris), da região central do estado de São Paulo. Tese de Doutorado, Centro de Energia Nuclear na Agricultura, Universidade de São Paulo.

  • ZucolotoR.B.VerdadeL.M.CoutinhoL.L. (2002): Microsatellite DNA library for Caiman latirostris. J. Exp. Zool. 294: 346- 351.

  • ZucolotoR.B.Marqui Schimidt VillelaP.VerdadeL.M.CoutinhoL.L. (2006): Cross-species microsatellite amplification in South American Caimans (Caiman spp. and Paleosuchus palpebrosus). Gen. Mol. Biol. 29: 75- 78.

    • Search Google Scholar
    • Export Citation
  • ZucolotoR.B.VerdadeL.M.VillelaP.M.S.RegitanoL.C.A.CoutinhoL.L. (2009): Parentage test in broad-snouted caimans (Caiman latirostris, Crocodylidae) using microsatellite DNA ( short communication ). Gen. Mol. Biol. 32: 874- 881.

    • Search Google Scholar
    • Export Citation

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 153 115 9
Full Text Views 162 41 0
PDF Downloads 7 2 0