DNA barcoding Madagascar’s amphibian fauna

in Amphibia-Reptilia
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.

Help

 

Have Institutional Access?

Login with your institution. Any other coaching guidance?

Connect

We provide a DNA barcoding survey of Malagasy amphibians, including 251 of the 292 nominal species known to date, by complementing previous data with 280 newly determined barcoding sequence fragments of the mitochondrial cytochrome oxidase subunit I (COI) gene. Amplification success for the newly determined sequences was highest (94%) with one set of universal COI primers (dgLCO1490-dgHCO2198) while other primer sets had distinctly lower success rates. By and large, we observed relatively high average interspecific genetic distances of 25-27% within the Mantellidae and Microhylidae, and genetic distances of 13-21% within the Hyperoliidae. Lower values of 6-7% were observed between some sister species in all families, with extreme lows of 0.2-0.3% between a few sister species pairs in microhylids and mantellids for which we postulate mitochondrial introgression or yet unsettled taxonomy. Within-species divergences were relatively high especially in mantellids where they averaged 5.3%, due to the inclusion of numerous deep conspecific lineages (by definition with high divergences to other specimens) in our study. Above this, the degree of polymorphism was difficult to establish owing to limited sampling per population in our assessment. Compared to a previous assessment from 2009 based on 16S rDNA sequences, we identify 14 additional undescribed candidate species and raise the maximum estimate of species in the island’s batrachofauna to well over 500.

Sections
References
  • AllnuttT.F.AsnerG.P.GoldenC.D.PowellG.V.N. (2013): Mapping recent deforestation and forest disturbance in northeastern Madagascar. Trop. Conserv. Sci. 6: 1-15.

    • Search Google Scholar
    • Export Citation
  • AymozB.G.P.RandrianjafyV.R.RandrianjafyZ.J.N.KhasaD.P. (2013): Community management of natural resources: A case study from Ankarafantsika National Park, Madagascar. AMBIO 42: 767-775.

    • Search Google Scholar
    • Export Citation
  • BarnoskyA.D.MatzkeN.TomiyaS.WoganG.O.U.SwartzB.QuentalT.B.MarshallC.McGuireJ.L.LindseyE.L.MaguireK.C.MerseyB.FerrerE.A. (2011): Has the Earth’s sixth mass extinction already arrived? Nature 471: 51-57.

    • Search Google Scholar
    • Export Citation
  • BhargavaM.SharmaA. (2013): DNA barcoding in plants: Evolution and applications of in silico approaches and resources. Mol. Phylogenet. Evol. 67: 631-641.

    • Search Google Scholar
    • Export Citation
  • BrooksT.M.MittermeierR.A.da FonsecaG.A.B.GerlachJ.HoffmannM.LamoreuxJ.F.MittermeierC.G.PilgrimJ.D.RodriguesA.S.L. (2006): Global biodiversity conservation priorities. Science 313: 58-61.

    • Search Google Scholar
    • Export Citation
  • BrufordM.W.HanotteO.BrookfieldJ.F.Y.BurkeT. (1992): Single-locus and multilocus DNA fingerprinting. In: Molecular Genetic Analysis of Populations: A Practical Approach p.  225-270. HoelzelA.R. Ed. IRL PressOxford.

    • Search Google Scholar
    • Export Citation
  • BruniI.De MattiaF.MartellosS.GalimbertiA.SavadoriP.CasiraghiM.NimisP.L.LabraM. (2012): DNA barcoding as an effective tool in improving a digital plant identification system: A case study for the area of Mt. Valerio, Trieste (NE Italy). PLoS One 7: e43256.

    • Search Google Scholar
    • Export Citation
  • ButlerJ.S.MoserC.M. (2007): Cloud cover and satellite images of deforestation. Land Econ. 8: 166-173.

  • CheJ.ChenH.M.YangJ.X.JinJ.Q.JiangK.YuanZ.Y.MurphyR.W.ZhangY.P. (2012): Universal COI primers for DNA barcoding amphibians. Mol. Ecol. Res. 12: 247-258.

    • Search Google Scholar
    • Export Citation
  • ChengT.L.RovitoS.M.WakeD.B.VredenburgV.T. (2011): Coincident mass extirpation of Neotropical amphibians with the emergence of the infectious fungal pathogen Batrachochytrium dendrobatidis. Proc. Natl. Acad. Sci. USA 108: 9502-9507.

    • Search Google Scholar
    • Export Citation
  • CrawfordA.J.LipsK.R.BerminghamE. (2010): Epidemic disease decimates amphibian abundance, species diversity, and evolutionary history in the highlands of central Panama. Proc. Natl. Acad. Sci. USA 107: 13777-13782.

    • Search Google Scholar
    • Export Citation
  • CrawfordA.J.CruzC.GriffithE.RossH.IbáñezR.LipsK.R.DriskellA.C.BerminghamE.CrumpP. (2013): DNA barcoding applied to ex situ tropical amphibian conservation program reveals cryptic diversity in captive populations. Mol. Ecol. Res. 13: 1005-1018.

    • Search Google Scholar
    • Export Citation
  • FolmerO.BlackM.HoehW.LutzR.VrijenhoekR. (1994): DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3: 294-299.

    • Search Google Scholar
    • Export Citation
  • FouquetA.GillesA.VencesM.MartyC.BlancM.GemmellN.J. (2007): Underestimation of species richness in Neotropical frogs revealed by mtDNA analyses. PLoS One 2: e1109.

    • Search Google Scholar
    • Export Citation
  • FrancisC.M.BorienskoA.V.IvanovaN.V.EgerJ.L.LimB.K.Guillén-ServentA.KruskopS.V.MackieI.HebertP.D.N. (2010): The role of DNA barcodes in understanding and conservation of mammal diversity in Southeast Asia. PLoS One 5: e12575.

    • Search Google Scholar
    • Export Citation
  • GehringP.S.RatsoavinaF.M.VencesM. (2010): Filling the gaps – amphibian and reptile records from lowland rainforests in eastern Madagascar. Salamandra 46: 214-234.

    • Search Google Scholar
    • Export Citation
  • GlawF.KöhlerJ.De la RivaI.VieitesD.R.VencesM. (2010): Integrative taxonomy of Malagasy treefrogs: combination of molecular genetics, bioacoustics and comparative morphology reveals twelve additional species of Boophis. Zootaxa 2383: 1-82.

    • Search Google Scholar
    • Export Citation
  • GlosJ.GlawF.VencesM. (2005): A new species of Scaphiophryne from western Madagascar. Copeia 2005: 252-261.

  • GoodmanS.M.BensteadJ.P. (2005): Updated estimates of biotic diversity and endemism for Madagascar. Oryx 39: 73-77.

  • HarperG.J.SteiningerM.K.TuckerC.J.JuhnD.HawkinsF. (2007): Fifty years of deforestation and forest fragmentation in Madagascar. Environ. Conserv. 34: 325-333.

    • Search Google Scholar
    • Export Citation
  • HausmannA.HaszprunarG.HebertP.D.N. (2011): DNA barcoding the geometrid fauna of Bavaria (Lepidoptera): Successes, surprises, and questions. PLoS One 6: e17134.

    • Search Google Scholar
    • Export Citation
  • HawkinsM.A.SitesJ.W.Jr.NoonanB.P. (2007): Dendropsophus minutus (Anura: Hylidae) of the Guiana Shield: using DNA barcodes to assess identity and diversity. Zootaxa 1540: 61-67.

    • Search Google Scholar
    • Export Citation
  • InnesJ.L. (2010): Madagascar rosewood, illegal logging and the tropical timber trade. Madag. Conserv. Dev. 5: 6-10.

  • KöhlerJ.VencesM.D’CruzeN.GlawF. (2010): Giant dwarfs: discovery of a radiation of large-bodied ‘stump-toed frogs’ from karstic cave environments of northern Madagascar. J. Zool. 282: 21-38.

    • Search Google Scholar
    • Export Citation
  • KremenC.CameronA.MoilanenA.PhillipsS.J.ThomasC.D.BeentjeH.DransfieldJ.FisherB.L.GlawF.GoodT.C.HarperG.J.HijmansR.J.LeesD.C.LouisE.Jr. (2008): Aligning conservation priorities across taxa in Madagascar with high-resolution planning tools. Science 320: 222-226.

    • Search Google Scholar
    • Export Citation
  • MeyerC.GellerJ.PaulayG. (2005): Fine scale endemism on coral reefs: Archipelagic differentiation in turbinid gastropods. Evolution 59: 113-125.

    • Search Google Scholar
    • Export Citation
  • MittermeierR.A.GilP.R.PilgrimJ. (2005): Hotspots Revisited: Earth’s Biologically Richest and Most Endangered Terrestrial Ecoregions. Conservation InternationalArlington.

    • Search Google Scholar
    • Export Citation
  • MittermeierR.A.TurnerW.R.LarsenF.W.BrooksT.M.GasconC. (2011): Global biodiversity conservation: the critical role of hotspots. In: Biodiversity Hotspots p.  3-22. ZachosF.HabelJ.C. Eds SpringerBerlin.

    • Search Google Scholar
    • Export Citation
  • MurphyR.W.CrawfordA.J.BauerA.M.CheJ.DonnellanS.C.FritzU.HaddadC.F.B.NagyZ.T.PoyarkovN.A.VencesM.WangW.-Z.ZhangY.-P. (2013): Cold Code: the global initiative to DNA barcode amphibians and nonavian reptiles. Mol. Ecol. Res. 13: 161-167.

    • Search Google Scholar
    • Export Citation
  • MyersN.MittermeierR.A.MittermeierC.G.da FonsecaG.A.B.KentJ. (2000): Biodiversity hotspots for conservation priorities. Nature 403: 853-858.

    • Search Google Scholar
    • Export Citation
  • NagyZ.T.SonetG.GlawF.VencesM. (2012): First large-scale DNA barcoding assessment of reptiles in the biodiversity hotspot of Madagascar, based on newly designed COI primers. PLoS One 7: e34506.

    • Search Google Scholar
    • Export Citation
  • Naro-MacielE.ReidB.FitzsimmonsN.N.LeM.DesalleR.AmatoG. (2010): DNA barcodes for globally threatened marine turtles: a registry approach to documenting biodiversity. Mol. Ecol. Res. 10: 252-263.

    • Search Google Scholar
    • Export Citation
  • NeigelJ.DomingoA.StakeJ. (2007): DNA barcoding as a tool for coral reef conservation. Coral Reefs 26: 487-499.

  • OrmeC.D.L.DaviesR.G.BurgessM.EigenbrodF.PickupN.OlsonV.A.WebsterA.J.DingT.-S.RasmussenP.C.RidgelyR.S.StattersfieldA.J.BennettP.M. (2005): Global hotspots of species richness are not congruent with endemism or threat. Nature 436: 1016-1019.

    • Search Google Scholar
    • Export Citation
  • Orozco-terWengelP.AndreoneF.LouisE.Jr.VencesM. (2013): Mitochondrial introgressive hybridization following a demographic expansion in the tomato frogs of Madagascar, genus Dyscophus. Mol. Ecol. 22: 6074-6090.

    • Search Google Scholar
    • Export Citation
  • PadialJ.M.MirallesA.de la RivaI.VencesM. (2010): The integrative future of taxonomy. Front. Zool. 7: e16.

  • PfundJ.L.WattsJ.D.BoissièreM.BoucardA.BullockR.M.EkadinataA.DewiS.FeintrenieL.LevangP.RantalaS.SheilD.SunderlandT.C.H.UrechZ.L. (2011): Understanding and integrating local perceptions of trees and forests into incentives for sustainable landscape management. Environ. Manage. 48: 334-349.

    • Search Google Scholar
    • Export Citation
  • RandriamalalaH.LiuZ. (2010): Rosewood of Madagascar: Between democracy and conservation. Madag. Conserv. Dev. 5: 11-22.

  • RandrianiainaR.D.StraußA.GlosJ.GlawF.VencesM. (2011): Diversity, external morphology and ‘reverse taxonomy’ in the specialized tadpoles of Malagasy river bank frogs of the subgenus Ochthomantis (genus Mantidactylus). Contr. Zool. 80: 17-65.

    • Search Google Scholar
    • Export Citation
  • RandrianiainaR.D.StraußA.GlosJ.VencesM. (2012): Diversity of strongly rheophilous tadpoles of Malagasy tree frogs, genus Boophis (Anura, Mantellidae), and identification of new candidate species via larval DNA sequence and morphology. ZooKeys 178: 59-124.

    • Search Google Scholar
    • Export Citation
  • RatnasinghamS.HebertP.D.N. (2013): A DNA-based registry for all animal species: the barcode index number (BIN) system. PLoS One 8: e66213.

    • Search Google Scholar
    • Export Citation
  • RosaG.AndreoneF.CrottiniA.HauswaldtJ.S.NoelJ.RabibisoaN.H.RandriambahiniarimeM.O.RebeloR.RaxworthyC.J. (2012): The amphibians of the relict Betampona low-elevation rainforest, eastern Madagascar: an application of the integrative taxonomy approach to biodiversity assessments. Biodiv. Conserv. 21: 1531-1559.

    • Search Google Scholar
    • Export Citation
  • SmithM.A.PoyarkovN.A.Jr.HebertP.D.N. (2008): DNA barcoding: CO1 DNA barcoding amphibians: take the chance, meet the challenge. Mol. Ecol. Res. 8: 235-246.

    • Search Google Scholar
    • Export Citation
  • StamatakisA. (2006): RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688-2690.

    • Search Google Scholar
    • Export Citation
  • StamatakisA.HooverP.RougemontJ. (2008): A rapid bootstrap algorithm for the RAxML Web servers. Syst. Biol. 57: 758-771.

  • TamuraK.PetersonD.PetersonN.StecherG.NeiM.KumarS. (2011): MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731-2739.

    • Search Google Scholar
    • Export Citation
  • UrechZ.L.FelberH.R.SorgJ.P. (2012): Who wants to conserve remaining forest fragments in the Manompana Corridor? Madag. Conserv. Dev. 7: 135-143.

    • Search Google Scholar
    • Export Citation
  • VencesM.GeharaM.KöhlerJ.GlawF. (2012a): Description of a new Malagasy treefrog (Boophis) occurring syntopically with its sister species, and a plea for studies on non-allopatric speciation in tropical amphibians. Amphibia-Reptilia 33: 503-520.

    • Search Google Scholar
    • Export Citation
  • VencesM.GlawF.KöhlerJ.WollenbergK.C. (2010): Molecular phylogeny, morphology and bioacoustics reveal five additional species of arboreal microhylids of the genus Anodonthyla from Madagascar. Contr. Zool. 79: 1-32.

    • Search Google Scholar
    • Export Citation
  • VencesM.NagyZ.T.SonetG.VerheyenE. (2012b): DNA barcoding amphibians and reptiles. In: DNA Barcodes: Methods and Protocols p.  79-107. KressW.J.EricksonD.L. Eds Springer Protocols Methods in Molecular Biology 858.

    • Search Google Scholar
    • Export Citation
  • VencesM.ThomasM.van der MeijdenA.ChiariY.VieitesD.R. (2005a): Comparative performance of the 16S rRNA gene in DNA barcoding of amphibians. Front. Zool. 2: 1-12.

    • Search Google Scholar
    • Export Citation
  • VencesM.ThomasM.BonettR.M.VieitesD.R. (2005b): Deciphering amphibian diversity through DNA barcoding: chances and challenges. Philos. Trans. R. Soc. B 360: 1859-1868.

    • Search Google Scholar
    • Export Citation
  • VencesM.WollenbergK.C.VieitesD.R.LeesD.C. (2009): Madagascar as a model region of species diversification. Trends Ecol. Evol. 24: 456-465.

    • Search Google Scholar
    • Export Citation
  • VieitesD.R.WollenbergK.C.AndreoneF.KöhlerJ.GlawF.VencesM. (2009): Vast underestimation of Madagascar’s biodiversity evidenced by an integrative amphibian inventory. Proc. Natl. Acad. Sci. USA 106: 8267-8272.

    • Search Google Scholar
    • Export Citation
  • VieitesD.R.WollenbergK.C.VencesM. (2012): Not all little brown frogs are the same: a new species of secretive and cryptic Gephyromantis (Anura: Mantellidae) from Madagascar. Zootaxa 3344: 34-46.

    • Search Google Scholar
    • Export Citation
  • WakeD.B.VredenburgV.T. (2008): Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proc. Natl. Acad. Sci. USA 105: 11466-11473.

    • Search Google Scholar
    • Export Citation
  • WardR.D.ZemlakT.S.InnesB.H.LastP.R.HebertP.D.N. (2005): DNA barcoding Australia’s fish species. Phil. Trans. Roy. Soc. London B 360: 1847-1857.

    • Search Google Scholar
    • Export Citation
  • WollenbergK.C.GlawF.MeyerA.VencesM. (2007): Molecular phylogeny of Malagasy reed frogs, Heterixalus, and the relative performance of bioacoustics and color-patterns for resolving their systematics. Mol. Phylogenet. Evol. 45: 14-22.

    • Search Google Scholar
    • Export Citation
  • WollenbergK.C.HarveyJ. (2010): Territorial vocal behavior of a direct-developing Malagasy frog (Gephyromantis thelenae). Herpetol. Notes 3: 141-150.

    • Search Google Scholar
    • Export Citation
  • WollenbergK.C.VieitesD.R.van der MeijdenA.GlawF.CannatellaD.C.VencesM. (2008): Patterns of endemism and species richness in Malagasy cophyline frogs support a key role of mountainous areas for speciation. Evolution 62: 1890-1907.

    • Search Google Scholar
    • Export Citation
  • WollenbergK.C.VieitesD.R.GlawF.VencesM. (2011): Speciation in little: the role of range and body size in the diversification of Malagasy mantellid frogs. BMC Evolutionary Biology 11: article 217.

    • Search Google Scholar
    • Export Citation
  • XiaY.GuH.-F.PengR.ChenQ.ZhengY.-C.MurphyR.W.ZengX.-M. (2012): COI is better than 16S rRNA for DNA barcoding Asiatic salamanders (Amphibia: Caudata: Hynobiidae). Mol. Ecol. Res. 12: 48-56.

    • Search Google Scholar
    • Export Citation
Figures
  • View in gallery

    Maximum likelihood tree (RAxML) based on COI sequences of Malagasy anurans. Generic names and photos represent species-rich genera. While filled circles indicate monophyly of the respective genera, subfamilies, or families, open circles mark paraphyletic taxa. For a tree including taxon names, see supplementary fig. S1. This figure is published in colour in the online version.

Index Card
Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 264 258 12
Full Text Views 253 253 4
PDF Downloads 15 15 1
EPUB Downloads 0 0 0