Differences in chytridiomycosis infection costs between two amphibian species from Central Europe

In: Amphibia-Reptilia

Batrachochytrium dendrobatidis (Bd) causes the disease chytridiomycosis associated with amphibian declines. Response and costs of infection varies greatly between species. Bd can induce a stress response in amphibians resulting in elevated corticosterone (CORT). We exposed Bombina variegata and Hyla arborea tadpoles to Bd+ or Bd- Salamandra salamandra larvae and measured CORT release rates, Bd infection loads, and survival through metamorphosis. Tadpoles of both species exposed to Bd+ larvae had elevated CORT release rates compared to tadpoles exposed to Bd- larvae. Bombina variegata appear less resistant to infection than H. arborea, showing higher Bd loads and more infected individuals. Within species, we did not find differences in cost of infection on survival, however more B. variegata tadpoles reached metamorphosis than H. arborea. The differences in resistance may be species specific, owing to higher immunity defenses with H. arborea having higher overall CORT release rates, and differences in antimicrobial peptides, or to differences in Bd strain or other unexplored mechanisms.

  • BalážV.VörösJ.CivišP.VojarJ.HettyeyA.SósE.DankovicsR.JehleR.ChristiansenD.G.ClareF.,  (2014): Assessing risk and guidance on monitoring of Batrachochytrium dendrobatidis in Europe through identification of taxonomic selectivity of infection. Conserv. Biol. 28: 213-223.

    • Search Google Scholar
    • Export Citation
  • BergerL.SpeareR.DaszakP.GreenD.CunninghamA. (1998): Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. Proc. Natl. Acad. Sci. U.S.A. 95: 9031.

    • Search Google Scholar
    • Export Citation
  • BielbyJ.FisherM.ClareF.RosaG.GarnerT. (2015): Host species vary in infection probability, sub-lethal effects, and costs of immune response when exposed to an amphibian parasite. Sci. Rep. 5: 10828.

    • Search Google Scholar
    • Export Citation
  • BlausteinA.RomansicJ.ScheesseleE.HanB.PessierA.LongcoreJ. (2004): Interspecific variation in susceptibility of frog tadpoles to the pathogenic fungus Batrachochytrium dendrobatidis. Conserv. Biol. 19: 1460-1468.

    • Search Google Scholar
    • Export Citation
  • BoschJ.Martínez-SolanoI.García-ParísM. (2001): Evidence of a chytrid fungus infection involved in the decline of the common midwife toad (Alytes obstetricans) in protected areas of central Spain. Biol. Cons. 97: 331-337.

    • Search Google Scholar
    • Export Citation
  • BoschJ.Martínez-SolanoI. (2006): Chytrid fungus infection related to unusual mortalities of Salamandra salamandra and Bufo bufo in the Penalara Natural Park, Spain. Oryx 40: 84.

    • Search Google Scholar
    • Export Citation
  • BoyleD.OlsenV.MorganJ.HyattA. (2004): Rapid quantitative detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay. Dis. Aquat. Org. 60: 141.

    • Search Google Scholar
    • Export Citation
  • BuschD.S.HaywardL.S. (2009): Stress in a conservation context: a discussion of glucocorticoid actions and how levels change with conservation-relevant variables. Biol. Cons. 142: 2844-2853.

    • Search Google Scholar
    • Export Citation
  • CheatsazanH.de AlmediaA.RussellA.BonneaudC. (2013): Experimental evidence for a cost of resistance to the fungal pathogen, Batrachochytrium dendrobatidis, for the palmate newt, Lissotriton helveticus. BMC Ecology 13: 27.

    • Search Google Scholar
    • Export Citation
  • DankovicsR. (1995): The herpetofauna of őrség. Savaria, a Vas megyei Múzeumok Értesítője 22: 253–258. [In Hungarian].

  • DaszakP.StriebyA.CunninghamA.A.LongcoreJ.BrownC.PorterD. (2004): Experimental evidence that the bullfrog (Rana catesbeiana) is a potential carrier of chytridiomycosis, an emerging fungal disease of amphibians. Herpetol. J. 14: 201-207.

    • Search Google Scholar
    • Export Citation
  • DhabharF. (2009): A hassle a day may keep the pathogens away: the fight-or-flight stress response and the augmentation of immune function. Integ. Comp. Biol. 49: 215-236.

    • Search Google Scholar
    • Export Citation
  • DhabharF.McEwenB. (1997): Acute stress enhances while chronic stress suppresses cell-mediated immunity in vivo: a potential role for leukocyte trafficking. Brain Behav. Immun. 11 (4): 286-306.

    • Search Google Scholar
    • Export Citation
  • EllisT.JamesJ.StewartC.ScottA. (2004): A noninvasive stress assay based upon measurement of free cortisol released into the water by rainbow trout. J. Fish Biol. 65: 1233-1252.

    • Search Google Scholar
    • Export Citation
  • GaborC.FisherM.BoschJ. (2013): A non-invasive stress assay shows that tadpole populations infected with Batrachochytrium dendrobatidis have elevated corticosterone levels. PLoS One 8 (2).

    • Search Google Scholar
    • Export Citation
  • GaborC.FisherM.BoschJ. (2015): Elevated corticosterone levels and changes in amphibian behavior are associated with Batrachochytrium dendrobatidis (Bd) infection and Bd lineage. PLoS One 10 (4).

    • Search Google Scholar
    • Export Citation
  • GaborC.ZabierekK.KimD.Alberici da BarbianoL.MondelliM.BendikN.DavisD. (2016): A non-invasive water-borne assay of stress hormones in aquatic salamanders. Copeia 2016: 172-181.

    • Search Google Scholar
    • Export Citation
  • GarnerT.WalkerS.BoschJ.LeechS.RowcliffeM.CunninghamA.FisherM. (2009): Life history tradeoffs influence mortality associated with the amphibian pathogen Batrachochytrium dendrobatidis. Oikos 118: 783-791.

    • Search Google Scholar
    • Export Citation
  • GosnerK. (1960): A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16: 183-190.

  • HarrisR.JamesT.LauerA.SimonM.PatelA. (2006): Amphibian pathogen Batrachochytrium dendrobatidis is inhibited by the cutaneous bacteria of amphibian species. EcoHealth 3: 53-56.

    • Search Google Scholar
    • Export Citation
  • HegyessyG. (2006): Amphibia – Kétéltűek. In: Notes on the Vertebrate Fauna of North-Eastern Hungary I. – Lampreys (Petromyzontiformes), Fishes (Pisces), Amphibians (Amphibia) and Reptiles (Reptilia). Annales Musei Miskolciensis de Herman Ottó Nominati, 45, p.  507-516. VeresL.VigaG., Eds. [In Hungarian with English summary].

    • Search Google Scholar
    • Export Citation
  • KilpatrickM.BriggsC.DaszakP. (2010): The ecology and impact of chytridiomycosis: an emerging disease of amphibians. Trends Ecol. Evol. 25: 109-118.

    • Search Google Scholar
    • Export Citation
  • KindermannC.NarayanE.J.HeroJ.-M. (2012): Urinary corticosterone metabolites and chytridiomycosis disease prevalence in a free-living population of male Stony Creek frogs (Litoria wilcoxii). Comparative biochemistry and physiology, Part A, Molec. Integrat. Physiol. 162: 171-176.

    • Search Google Scholar
    • Export Citation
  • LipsK. (2016): Overview of chytrid emergence and impacts on amphibians. Philos. T. Roy. Soc. B. 371: 20150465.

  • MaherJ.WernerE.E.DenverR.J. (2013): Stress hormones mediate predator-induced phenotypic plasticity in amphibian tadpoles. Proc. R. Soc. B 280: 20123075.

    • Search Google Scholar
    • Export Citation
  • MedinaD.GarnerT.W.CarrascalL.M.BoschJ. (2015): Delayed metamorphosis of amphibian larvae facilitates Batrachochytrium dendrobatidis transmission and persistence. Dis. Aquat. Org. 117: 85-92.

    • Search Google Scholar
    • Export Citation
  • PaskJ.D.WoodhamsD.C.Rollins-SmithL.A. (2012): The ebb and flow of antimicrobial skin peptides defends northern leopard frogs (Rana pipiens) against chytridiomycosis. Glob. Change Biol. 18: 1231-1238.

    • Search Google Scholar
    • Export Citation
  • PetersonJ.D.SteffenJ.E.ReinertL.K.CobineP.A.AppelA.Rollins-SmithL.MendoncaM.T. (2013): Host stress response is important for the pathogenesis of the deadly amphibian disease, chytridiomycosis, in Litoria caerulea. PLoS One 8.

    • Search Google Scholar
    • Export Citation
  • PiotrowskiJ.AnnisS.LongcoreJ. (2004): Physiology of Batrachochytrium dendrobatidis, a chytrid pathogen of amphibians. Mycologia 96: 9-15.

    • Search Google Scholar
    • Export Citation
  • RödderD.KielgastJ.BielbyJ.SchmidtleinS.BoschJ.GarnerT.VeithM.WalkerS.FisherM.LöttersS. (2009): Global amphibian extinction risk assessment for the panzootic chytrid fungus. Diversity 2009: 52-65.

    • Search Google Scholar
    • Export Citation
  • Rollins-SmithL.RamseyJ.PaskJ.ReinertL.WoodhamsD. (2011): Amphibian immune defenses against chytridiomycosis: impacts of changing environments. Integ. Comp. Biol. 51: 552-562.

    • Search Google Scholar
    • Export Citation
  • SavageA.TerrellK.GratwickeB.MattheusN.AugustineL.FleischerR. (2016): Reduced immune function predicts disease susceptibility in frogs infected with a deadly fungal pathogen. Conserv. Physiol. 4 (1). DOI:10.1093/conphys/cow011.

    • Search Google Scholar
    • Export Citation
  • SchmidtB.FeldmannR.SchaubM. (2005): Demographic processes underlying population growth and decline in Salamandra salamandra. Conserv. Biol. 19: 1149-1156.

    • Search Google Scholar
    • Export Citation
  • SearleC.L.BeldenL.K.DuP.BlausteinA.R. (2014): Stress and chytridiomycosis: exogenous exposure to corticosterone does not alter amphibian susceptibility to a fungal pathogen. J. Exper. Zool. Part A, Ecol. Genet. Physiol. 321: 243-253.

    • Search Google Scholar
    • Export Citation
  • SearleC.L.GervasiS.S.HuaJ.HammondJ.I.RelyeaR.A.OlsonD.H.BlausteinA.R. (2011): Differential host susceptibility to Batrachochytrium dendrobatidis, an emerging amphibian pathogen. Conserv. Biol. 25: 965-974.

    • Search Google Scholar
    • Export Citation
  • SheriffM.J.DantzerB.DelehantyB.PalmeR.BoonstraR. (2011): Measuring stress in wildlife: techniques for quantifying glucocorticoids. Oecologia 166: 869-887.

    • Search Google Scholar
    • Export Citation
  • SoltiB.VargaA. (1981): A Mátra-hegység kétéltű faunája (Herpetofauna of the Mátra Mts.). Folia Historico-Naturalia Musei Matraensis 7: 81-101. [In Hungarian].

    • Search Google Scholar
    • Export Citation
  • Spitezen-Van Der SluijsA.MartelA.HallmannC.BosmanW.GarnerT.Van RooijP.JorisR.HaesebrouckF.PasmansF. (2014): Environmental determinants of recent endemism of Batrachochytrium dendrobatidis infections in amphibian assemblages in the absence of disease outbreaks. Conserv. Biol. 28: 1302-1311.

    • Search Google Scholar
    • Export Citation
  • StuartS.ChansonJ.CoxN.YoungB.RodriguesA.FischmanD.WallerR. (2004): Status and trends of amphibian declines and extinctions worldwide. Science 306: 1783-1786.

    • Search Google Scholar
    • Export Citation
  • SztatecsnyM.GlaserF. (2011): From the eastern lowlands to the western mountains: first records of the chytrid fungus Batrachochytrium dendrobatidis in wild amphibian populations from Austria. Herpetol. J. 21: 87-90.

    • Search Google Scholar
    • Export Citation
  • ToblerU.SchmidtB. (2010): Within- and among-population variation in chytridiomycosis-induced mortality in the toad Alytes obstetricans. PLoS One 5 (6).

    • Search Google Scholar
    • Export Citation
  • VoylesJ.YoungS.BergerL.CampbellC.VoylesW.F.DinudomA.CookD.WebbR.AlfordR.A.SkerrattL.F.SpeareR. (2009): Pathogenesis of chytridiomycosis, a cause of catastrophic amphibian declines. Science 326: 582-585.

    • Search Google Scholar
    • Export Citation
  • WarneR.CrespiE.BrunnerJ. (2011): Escape from the pond: stress and developmental responses to ranavirus infection in wood frog tadpoles. Funct. Ecol. 25: 139-146.

    • Search Google Scholar
    • Export Citation
  • WoodhamsD.ArdipradjaK.AlfordR.MarantelliG.ReinertL.Rollins-SmithL. (2007): Resistance to chytridiomycosis varies among amphibian species and is correlated with skin peptide defenses. Anim. Conserv. 10: 409-417.

    • Search Google Scholar
    • Export Citation
  • WoodhamsD.BoschJ.BriggsC.CashinsS.DavisL.LauerA.MuthsE.PuschendorfR.SchmidtB.SheaforB.VoylesJ. (2011): Mitigating amphibian disease: strategies to maintain wild populations and control chytridiomycosis. Front. Zoo. 8: 8.

    • Search Google Scholar
    • Export Citation

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 163 68 2
Full Text Views 202 53 0
PDF Downloads 15 8 0